130 research outputs found

    Differentiation and adaptation of natural killer cells for anti-malarial immunity

    Get PDF
    Natural killer cells employ a diverse arsenal of effector mechanisms to target intracellular pathogens. Differentiation of natural killer (NK) cell activation pathways occurs along a continuum from reliance on innate pro-inflammatory cytokines and stress-induced host ligands through to interaction with signals derived from acquired immune responses. Importantly, the degree of functional differentiation of the NK cell lineage influences the magnitude and specificity of interactions with host cells infected with viruses, bacteria, fungi, and parasites. Individual humans possess a vast diversity of distinct NK cell clones, each with the capacity to vary along this functional differentiation pathway, which - when combined - results in unique individual responses to different infections. Here we summarize these NK cell differentiation events, review evidence for direct interaction of malaria-infected host cells with NK cells and assess how innate inflammatory signals induced by malaria parasite-associated molecular patterns influence the indirect activation and function of NK cells. Finally, we discuss evidence that anti-malarial immunity develops in parallel with advancing NK differentiation, coincident with a loss of reliance on inflammatory signals, and a refined capacity of NK cells to target malaria parasites more precisely, particularly through antibody-dependent mechanisms

    Short communication: NKG2C+ NK cells contribute to increases in CD16+CD56- cells in HIV type 1+ individuals with high plasma viral load.

    Get PDF
    Chronic HIV-1 infection results in the expansion of both NKG2C+ and CD16+CD56- human natural killer cells. NKG2C+ cells proliferate in response to human cytomegalovirus (HCMV) and expansion of the dysfunctional CD56-CD16+ natural killer (NK) cells is associated with HIV-1 viremia. Here we report an association between increased proportions of CD56-CD16+ NK cells in viremic HIV-1+ individuals and an increased contribution of NKG2C+ cells to this subset. These data, in addition to anti-HCMV IgG serology, indicate a potential contribution of both HCMV and HIV-1 to NK cell dysfunction in HIV-1-infected individuals

    Functional Significance of CD57 Expression on Human NK Cells and Relevance to Disease.

    Get PDF
    Historically, human NK cells have been identified as CD3(-)CD56(+)CD16(±) lymphocytes. More recently it has been established that CD57 expression defines functionally discrete sub-populations of NK cells. On T cells, CD57 expression has been regarded as a marker of terminal differentiation and (perhaps wrongly) of anergy and senescence. Similarly, CD57 expression seems to identify the final stages of peripheral NK cell maturation; its expression increases with age and is associated with chronic infections, particularly human cytomegalovirus infection. However, CD57(+) NK cells are highly cytotoxic and their presence seems to be beneficial in a number of non-communicable diseases. The purpose of this article is to review our current understanding of CD57 expression as a marker of NK cell function and disease prognosis, as well as to outline areas for further research

    Differential IL-18 dependence of canonical and adaptive NK cells for antibody dependent responses to P. falciparum

    Get PDF
    Human adaptive natural killer (NK) cells have diminished reliance on accessory cytokines for their activation whilst being efficiently activated by infected host cells in conjunction with pathogen specific antibodies. Here, we show that potent antibody-dependent NK cell responses are induced by Plasmodium falciparum infected erythrocytes (iRBC) in peripheral blood mononuclear cells (PBMC) from malaria-exposed Gambian individuals in the presence of autologous sera, which are absent in those from malaria-naïve UK individuals. However, malaria hyper-immune serum promotes rapid NK cell responses to iRBC in cells from both Gambian and UK individuals. Among Gambians, highly differentiated, adaptive (CD56dimFcεR1γ-CD57+) NK cells dominate both antibody-dependent NK cell IFN-γ responses and degranulation responses, whereas among UK individuals these responses are predominantly found within canonical, highly differentiated CD56dimFcεR1γ+CD57+ NK cells. Indeed, overall frequencies of adaptive, FcεR1γ-CD57+ NK cells are significantly higher among Gambian donors compared to HCMV-infected and HCMV-uninfected UK adults. Among UK individuals, antibody-dependent NK cell IFN-γ responses to iRBC were dependent on IL-18 whereas among Gambians, the predominant adaptive FcεR1γ- NK cell response was IL-18 (and accessory cell) independent (although the lower frequency response of canonical FcεR1γ NK cells did rely on this cytokine)

    Differential activation of CD57-defined natural killer cell subsets during recall responses to vaccine antigens

    Get PDF
    Natural killer (NK) cells contribute to the effector phase of vaccine-induced adaptive immune responses, secreting cytokines and releasing cytotoxic granules. The proportion of responding NK cells varies between individuals and by vaccine, suggesting that functionally discrete subsets of NK cells with different activation requirements may be involved. Here, we have used responses to individual components of the DTP vaccine [tetanus toxoid (TT), diphtheria toxoid (DT), whole cell inactivated pertussis] to characterize the NK cell subsets involved in interleukin-2-dependent recall responses. Culture with TT, DT or pertussis induced NK cell CD25 expression and interferon-γ production in previously vaccinated individuals. Responses were the most robust against whole cell pertussis, with responses to TT being particularly low. Functional analysis of discrete NK cell subsets revealed that transition from CD56bright to CD56dim correlated with increased responsiveness to CD16 cross-linking, whereas increasing CD57 expression correlated with a loss of responsiveness to cytokines. A higher frequency of CD56dim CD57− NK cells expressed CD25 and interferon-γ following stimulation with vaccine antigen compared with CD56dim CD57+ NK cells and made the largest overall contribution to this response. CD56dim CD57int NK cells represent an intermediate functional phenotype in response to vaccine-induced and receptor-mediated stimuli. These findings have implications for the ability of NK cells to contribute to the effector response after vaccination and for vaccine-induced immunity in older individuals

    CMV and natural killer cells: shaping the response to vaccination.

    Get PDF
    Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination

    Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation

    Get PDF
    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose-response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen-antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes

    Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells:Impact of Human Cytomegalovirus Infection

    Get PDF
    Human NK cells are activated by cytokines, immune complexes, and signals transduced via activating ligands on other host cells. After vaccination, or during secondary infection, adaptive immune responses can enhance both cytokine-driven and Ab-dependent NK cell responses. However, induction of NK cells for enhanced function after in vitro exposure to innate inflammatory cytokines has also been reported and may synergize with adaptive signals to potentiate NK cell activity during infection or vaccination. To test this hypothesis, we examined the effect of seasonal influenza vaccination on NK cell function and phenotype in 52 previously unvaccinated individuals. Enhanced, IL-2-dependent, NK cell IFN-γ responses to Influenza A/California/7/2009 virus were detected up to 4 wk postvaccination and higher in human CMV (HCMV)-seronegative (HCMV(-)) individuals than in HCMV-seropositive (HCMV(+)) individuals. By comparison, robust NK cell degranulation responses were observed both before and after vaccination, due to high titers of naturally occurring anti-influenza Abs in human plasma, and did not differ between HCMV(+) and HCMV(-) subjects. In addition to these IL-2-dependent and Ab-dependent responses, NK cell responses to innate cytokines were also enhanced after influenza vaccination; this was associated with proliferation of CD57(-) NK cells and was most evident in HCMV(+) subjects. Similar enhancement of cytokine responsiveness was observed when NK cells were cocultured in vitro with Influenza A/California/7/2009 virus, and this was at least partially dependent upon IFN-αβR2. In summary, our data indicate that attenuated or live viral vaccines promote cytokine-induced memory-like NK cells and that this process is influenced by HCMV infection

    No evidence for selection of HIV-1 with enhanced Gag-Protease or Nef function among breakthrough infections in the CAPRISA 004 tenofovir microbicide trial

    Get PDF
    BACKGROUND: Use of antiretroviral-based microbicides for HIV-1 prophylaxis could introduce a transmission barrier that inadvertently facilitates the selection of fitter viral variants among incident infections. To investigate this, we assessed the in vitro function of gag-protease and nef sequences from participants who acquired HIV-1 during the CAPRISA 004 1% tenofovir microbicide gel trial. Methods and RESULTS: We isolated the earliest available gag-protease and nef gene sequences from 83 individuals and examined their in vitro function using recombinant viral replication capacity assays and surface protein downregulation assays, respectively. No major phylogenetic clustering and no significant differences in gag-protease or nef function were observed in participants who received tenofovir gel versus placebo gel prophylaxis. CONCLUSION: Results indicate that the partial protective effects of 1% tenofovir gel use in the CAPRISA 004 trial were not offset by selection of transmitted/early HIV-1 variants with enhanced Gag-Protease or Nef fitness
    corecore