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23 Abstract

24 Natural killer cells employ a diverse arsenal of effector mechanisms to target intracellular pathogens. 

25 Differentiation of NK cell activation pathways occurs along a continuum from reliance on innate pro-

26 inflammatory cytokines and stress-induced host ligands through to interaction with signals derived 

27 from acquired immune responses. Importantly, the degree of functional differentiation of the NK cell 

28 lineage influences the magnitude and specificity of interactions with host cells infected with viruses, 

29 bacteria, fungi and parasites. Individual humans possess a vast diversity of distinct NK cell clones, 

30 each with the capacity to vary along this functional differentiation pathway, which - when combined 

31 - results in unique individual responses to different infections. Here we summarise these NK cell 

32 differentiation events, review evidence for direct interaction of malaria-infected host cells with NK 

33 cells and assess how innate inflammatory signals induced by malaria parasite-associated molecular 

34 patterns influence the indirect activation and function of NK cells. Finally, we discuss evidence that 

35 anti-malarial immunity develops in parallel with advancing NK differentiation, coincident with a loss 

36 of reliance on inflammatory signals, and a refined capacity of NK cells to target malaria parasites 

37 more precisely, particularly through antibody-dependent mechanisms.

38

39

40
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41 Introduction

42 Natural killer (NK) cells were initially identified as cytotoxic effector cells which recognise cancers in 

43 the context of ‘missing self’ – a process involving the absence or down regulation of self MHC 

44 molecules on tumor cells and which was subsequently observed in the recognition of virus-infected 

45 host cells 1,2. NK cells are now recognised as a phenotypically diverse population of innate lymphoid 

46 cells expressing a vast array of surface receptors that regulate their function 3. Whilst much of this 

47 heterogeneity relates to individual and population level genetic diversity, environmental factors have 

48 a considerable impact on the functional phenotype of NK cells 3-5. Age and the extent of exposure 

49 to infectious agents (particularly persistent viruses) can independently modulate the functional 

50 diversification of NK cells 6-9.  

51 Differences in the mode of activation of NK cells impact directly on how these cells are able to 

52 integrate immune activating signals resulting from malaria infection. Broadly speaking, less 

53 differentiated NK cells have increased reliance on innate inflammation-associated signals for their 

54 activation whilst age- and infection-related differentiation promotes integration of NK cell function 

55 with adaptive immune signals.

56 Evidence from experimental malaria infections in mice, humanised mouse models and controlled 

57 human malaria infections suggests NK cells are integral to the early immune response and are 

58 activated by inflammatory cytokines induced by blood stage infection. However, whilst affording 

59 some degree of protection against infection, NK cells can in some circumstances contribute to a 

60 pathogenic inflammatory cascade associated with symptomatic disease (reviewed in 10,11). 

61 Conversely, lesser reliance on inflammatory mediators alongside the coordinated maturation of the 

62 NK cell compartment and broadening of acquired malaria antigen-specific immunity may enhance 

63 protection against both malaria infection and malarial disease 10,11. By integrating innate cytokine-

64 mediated pro-inflammatory signals with adaptive immune signals induced by malaria parasites 

65 themselves, NK cells can act both as sensors of malaria infection and effectors of malaria specific 

66 anti-parasite immunity.
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67 Malaria is predominantly a blood-borne disease with growth and replication of asexual parasites and 

68 differentiation of transmissible (sexual) stages (gametocytes) occurring in the peripheral circulation, 

69 spleen and bone marrow. The interaction of malaria-infected cells with circulating peripheral blood 

70 NK cells is thus of potential relevance. However, the initial stage of the infection occurs in the liver 

71 where parasite-infected cells may also encounter tissue resident immune cells. 

72

73 Human natural killer cell differentiation

74 In humans, peripheral blood NK cells are defined according to the expression of CD56 (N-CAM) and 

75 the lack of CD3 chain. Peripheral blood NK cells express variable levels of CD56 – CD56bright cells 

76 being a minor population (circa 10% of peripheral blood NK cells) and CD56dim being the majority 

77 subset. In the blood, CD56bright NK cells are regarded as the least differentiated subset although a 

78 direct precursor relationship with CD56dim NK cells has not been definitively established. A schema 

79 representing the current understanding of human blood NK cell phenotypic and functional 

80 differentiation is shown in Figure 1 12. Importantly, CD56dim blood NK cells represent a spectrum of 

81 NK cell differentiation – a subset of CD56dim cells also express high levels of CD57, a cell surface 

82 moiety also associated with advanced T cell differentiation and senescence 13 (Figure 1). 

83 Interestingly, whilst CD56bright cells have longer telomeres and higher telomerase activity than the 

84 highly differentiated CD56dimCD57+ subset, irrespective of age, NK cells of all subsets from younger 

85 individuals tend to have longer telomeres than NK cells of older individuals, indicating that the 

86 differentiation status of NK cells is only partly age-related 14. Equivalent functional differentiation of 

87 NK cells is observed in mice and non-human primates, which may be of relevance to malaria 

88 infection models 15.

89 Progressive differentiation is associated with phenotypic changes which impact the functional 

90 propensities of NK cells (Figure 1).  CD56bright cells are characterised by their high level expression 

91 of cytokine receptors – in particular those for IL-12, IL-18, the innate common gamma-chain 

92 cytokines, and notably the CD25-CD122 heterodimer which possesses high affinity for interleukin-2 

93 (which enables NK cells to respond to picomolar concentrations of this T cell–derived cytokine) 12,16. 
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94 CD56dim NK cells do, however, also express intermediate levels of receptors for interferon alpha and 

95 IL-18. Receptors for other cytokines, including IL-2, are upregulated upon activation, consistent with 

96 additional regulation of cytokine responsiveness with increasing NK cell differentiation 17-19.  

97 However, the most differentiated NK cells exhibit altered transmembrane and intracellular signalling 

98 capacity, leading to reduced overall expression of cytokine receptors and a   diminishing reliance on 

99 both IL-12 and IL-18-mediated activation (see below). 

100 Variation in expression of receptors for various stress-induced and self-recognition (MHC) ligands 

101 also occurs with advancing NK cell differentiation (Reviewed in 12). CD56bright NK cells express high 

102 levels of the natural cytotoxicity receptors (NCR) NKp30 and NKp46, activating receptors of the Ig 

103 superfamily that promote interactions of NK cells with accessory cells and have been implicated in 

104 interactions with soluble molecules such as complement factor P and viruses, including reoviruses 

105 20-23. These less differentiated NK cells tend to express the inhibitory c-type lectin-like receptor 

106 NKG2A, which, in conjunction with CD94, recognises HLA leader peptides bound to HLA-E (Figure 

107 1). As differentiation proceeds towards a CD56dimCD57+ phenotype, surface expression of NCRs 

108 diminishes in parallel with an increase in the frequencies of cells expressing killer immunoglobulin-

109 like receptors (KIR) for MHC class I; at the same time NK cells expressing CD94-NKG2C begin to 

110 predominate over those expressing CD94-NKG2A 12 (Figure 1). Importantly, whilst only a minor 

111 subset of CD56bright NK cells express CD16, the low affinity IgG Fc receptor (FcgRIII), this receptor 

112 is expressed on the majority of CD56dim cells with expression levels being highest  on CD56dimCD57+ 

113 NK cells 19 (Figure 1).

114 The distribution and diversification of NK cell subsets vary considerably between blood, secondary 

115 lymphoid tissues, and inflamed non-lymphoid tissues, which may have consequences for local anti-

116 pathogen responses 15,24. In the spleen and secondary lymphoid tissues, including tonsils and lymph 

117 nodes, NK cells have a less differentiated phenotype, typically CD56bright c-kit- IL-7R- 25,26. NK cells 

118 from these secondary lymphoid tissues produce cytokines such as IFN-γ but can be induced by 

119 cytokines such as IL-12 and IL-18 to acquire receptors such as KIR (conventionally associated with 

120 more differentiated NK cell phenotypes), indicating that these tissue resident NK cells may be 
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121 actually be more differentiated than their circulating counterparts. In non-lymphoid tissues, there is 

122 significant diversity in NK cell populations24 including circulating non-resident conventional NK cells 

123 (cNK) that are phenotypically similar to CD56dim and CD56bright cells, and tissue resident NK cells (Tr-

124 NK) that vary markedly in phenotype and function between tissues. In the liver, for example, Tr-NK 

125 cells express CXCR6 and CD49d but are CD56dim with variable KIR and NKG2C expression. In 

126 contrast, uterine NK cells are CD56bright but also bear some hallmarks of conventional CD56dim NK 

127 cells including NKG2C and KIR expression 27. A common feature of Tr-NK cells, however, is a lack 

128 of expression of CD16 and CD57, typically found on cNK cells 24. 

129

130 Genetic and environmental factors influencing NK cell differentiation and function.

131 As with the T and B lymphocyte compartments, there is persuasive evidence that both genetic and 

132 environmental factors influence NK cell differentiation and function. Genetic heterogeneity, including 

133 population diversity of both HLA and KIR gene alleles, has considerable impact on NK cell function. 

134 NK cell responsiveness to cytokines, target cells and antibody complexed to FcR is also intrinsically 

135 regulated by a process termed ‘education’, where increased functional capacity is associated with 

136 binding of NK cell receptors to their “cognate” ligands 28,29. Educating signals include those 

137 generated by interaction of inhibitory self-KIR with conventional MHC class I molecules, NKG2A with 

138 HLA-E or HLA-G, or invariant NK cell receptors with their relevant ligands (for example the CD2-

139 LFA-3 interaction or CD16 crosslinking by IgG antibodies) 28-30, and can be cumulative. For example, 

140 the number of cognate pairs of KIR receptors able to bind to class I MHC molecules determines the 

141 overall capacity for NK cell IFN- production and degranulation 29. The molecular basis for 

142 potentiation of NK cell function by education has recently been reported to involve remodelling of 

143 secretory lysosomes, potentially by enhanced Ca2+ signalling from acidic cytoplasmic intracellular 

144 stores 31. If so, even though infected red blood cells essentially lack MHC class I molecules, 

145 individual genetic variation in NK cell receptors and their licensing ligands will influence the intrinsic 

146 capacity of NK cells to mount effector responses to infection, including to blood stage malaria 

147 parasites and may, in part, explain reported associations between KIR–HLA ligand pairings and 
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148 susceptibility to severe or cerebral malaria.32,33. Recent studies on the role of P. vivax-infected 

149 reticulocyte MHC class I expression in cytotoxic T lymphocyte responses, however, raise the 

150 possibility of direct modulation of NK cell responses under certain conditions 34. 

151 Human cytomegalovirus (HCMV) infection is the most well defined driver of NK cell functional 

152 diversification 4,8,35. Phenotypic and functional differentiation progresses more rapidly in those with 

153 HCMV infection, with increased expression of various activating and inhibitory receptors compared 

154 to uninfected individuals 4,8,35. More differentiated cells, including CD56dimCD57+ subsets, are 

155 increased in frequency in HCMV+ compared to HCMV- individuals 35,36. Moreover, expansions of 

156 cells expressing NKG2C, a differentiation-associated receptor which recognises HCMV-infected 

157 host cells in the context of HLA-E binding peptides from the viral UL40 gene, are observed in HCMV+ 

158 individuals during natural infection or upon virus reactivation after bone marrow transplantation. 36-38 

159 It is, however, as yet unclear whether NKG2C-HLA-E/UL40 interactions actually drive NK cell 

160 differentiation or act to expand already-differentiated cells.  

161  

162 PLZF – a master regulator of natural killer cell adaptation

163 NK cell differentiation and functional diversification is further amplified by variation in components of 

164 the signalling cascades associated with cell surface receptors 9. The transmembrane adaptor 

165 proteins CD3 and ZAP-70, and the intracellular adaptor protein SAP, define TCR + and TCR + 

166 T cell lineages, whilst CD19+ B cells are defined by expression of SYK tyrosine kinases and 

167 peripheral blood monocytes by the adaptor protein FcεR1γ, SYK and the intracellular adaptor EAT2. 

168 At a population level, peripheral blood NK cells express all of these molecules although there are 

169 differences in their expression between CD56bright and CD56dim NK cells and, more importantly, 

170 between individuals infected with HCMV and uninfected individuals 9. In HCMV-infected individuals, 

171 epigenetic suppression of the promoter of the proteomyeloid zinc finger molecule (PLZF), encoded 

172 by the ZBTB16 locus, leads to down-regulation of a cassette of genes expressed in less-

173 differentiated canonical NK cells 9. When released from the influence of these PLZF-regulated 

174 genes, the activation pathways of ‘adaptive’ NK cells diverge, downregulating intracellular signalling 
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175 components associated with myeloid and B cell lineages and freeing up the activity of adaptor 

176 proteins typically associated with memory T cell signalling, including CD3, ZAP70 and SAP 7,9. NK 

177 cell adaptation results in two particular functional consequences. Firstly, enhanced signalling 

178 through CD3 promotes more efficient activation of NK cells via CD16, thereby promoting improved 

179 activation and targeting of HCMV-infected target cells via antibody dependent pathways 7,9. Although 

180 adaptive NK cells are predominantly found in HCMV-infected individuals, preferential expansion of 

181 FcR1- NK cells by antibody crosslinking of CD16 is observed in response to other pathogens 

182 including influenza-infected target cells 7. A second functional consequence of NK cell adaptation is 

183 a loss of expression of cytokine receptors and associated signalling components, resulting in near 

184 complete loss of STAT4/p38 MAP kinase activation and inability to produce IFN- upon stimulation 

185 with these cytokines 9. Taken together, these major adaptations within the blood NK cell 

186 compartment, especially in HCMV-infected individuals, are likely to have important influences on NK 

187 cell responses to a range of pathogens, including malaria parasites.

188 Less differentiated (canonical) NK cells that respond exclusively to cytokines and antibody-

189 responsive ‘adaptive’ NK cells are polar opposites on a spectrum of activation requirements. 

190 Individuals differ in their frequencies of canonical and adaptive NK cells depending on their genetic 

191 make-up, age, HCMV infection and exposure to other infections, but, in many individuals, cells at an 

192 intermediate stage of differentiation tend to predominate. NK cells at the intermediate stage of 

193 differentiation will frequently integrate signals both from innate cytokines and cell surface ligands, 

194 including antigen-antibody complexes. NK cells at an intermediate stage of differentiation  

195 (CD56dimCD57+/PLZF+) retain residual capacity to respond to cytokines and CD56dimCD57-PLZF+ 

196 NK cells have intermediate levels of both cytokine receptors and FcRs, thereby integrating both of 

197 these signals (see Figure 1). Indeed, inflammatory cytokines, in particular IL-18, synergise with 

198 antibody-dependent signals to activate CD56dimCD16+ NK cells and for tumour cell targeting by 

199 adaptive NK cells 18,39.  In summary, the extent to which the NK cells of any given person have 

200 differentiated across this spectrum could, at one extreme, mean that NK cells act primarily as 

201 sensors of malaria-induced pro-inflammatory signals and contribute to the malaria induced 
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202 inflammatory cascade; at the other end of this spectrum, NK cells mediate very effective antibody-

203 dependent cellular cytotoxicity (ADCC), thereby contributing to protective immunity whilst limiting 

204 exacerbation of inflammatory processes. In practice, this implies that NK cell responses to malaria 

205 may vary between individuals and over an individual’s life course, with very different implications for 

206 their role in protection or pathogenesis. 

207

208 Malaria parasite induction of the inflammatory cascade and NK cell activating cytokines

209 Numerous studies of malaria infection in both animal models and humans have described the 

210 induction of inflammatory and anti-inflammatory cytokines as being crucial to determining the 

211 severity of disease and eventual outcomes. Erythrocytic stages of the parasite are most strongly 

212 associated with the induction of inflammatory cytokines, including the NK cell-activating cytokines 

213 IL-12, IL-18 and type 1 interferons.  

214 Over the past decade, an increasing number of malarial pathogen- or danger-associated molecular 

215 patterns (PAMPs and DAMPs) have been identified alongside their myeloid accessory cell receptors; 

216 these interactions drive the production of a diverse array of pro- and anti-inflammatory cytokines, 

217 including those modulating NK cell activity. Malaria-derived DAMPs and PAMPs include nucleic 

218 acids and by-products of intraerythrocytic growth and replication including GPI anchor domains from 

219 malarial proteins and modified haemozoin (reviewed in 40). Binding of these molecules to an array 

220 of innate recognition receptors, including TLR9, TLR7 and MyD88, has been implicated in the 

221 induction of IL-18, IL-12 and IFN- in human and murine myeloid cells 41-45. For example, P. 

222 falciparum-infected red blood cells (iRBC) have been shown to induce IL-18 in murine monocytes in 

223 vitro and stimulation of murine bone marrow-derived myeloid dendritic cells from TLR9 or MyD88 

224 knockout mice revealed an essential role for these pathways in the IL-12 response to P. falciparum 

225 iRBC and to parasite DNA-protein or DNA-carbohydrate polymer complexes 41,45. Interestingly, in 

226 murine P. yoelii infection, production of IL-18 is MyD88-dependent but TLR9 independent, and 

227 serum IL-12 increased in TLR9-/- mice coincident with a downregulation of IL-10 production 42, whilst 

228 production of IFN- requires STING-mediated detection of parasites by macrophages 44.  These 
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229 data are therefore indicative of a complex interaction between inflammatory and anti-inflammatory 

230 cytokines which could impact the overall NK cell response. Significantly, the AT-rich stem loops 

231 prevalent in P. falciparum DNA have been implicated in TLR-9 independent recognition by the 

232 STING, TBK1 and IRF3-IRF-7 pathways 46 and TLR7-MyD88-mediated recognition of P. yoelii DNA 

233 is implicated in the activation of plasmacytoid DCs 44. 

234 Inflammasome-mediated induction of inflammatory cytokines, in particular IL-1 and IL-18, has also 

235 been described during malaria infections: P. berghei genomic DNA complexed to normally inert 

236 malarial hemozoin activates bone marrow-derived murine macrophages via TLR-9, providing 

237 priming and activation signals for NLRP3/AIM2 inflammasomes 47,48 and circulating immune 

238 complexes containing P. falciparum and P. vivax DNA can also induce inflammasome assembly, 

239 caspase I induction and increased production of IL-1 and IL-18 (RNA) in human monocytes. 49.  

240 In summary, the induction of cytokines with documented potential to activate NK cells is evident in 

241 both human and murine malaria infections and involves the co-operation of a number of distinct 

242 molecular patterns and signalling pathways in diverse myeloid cell populations. 

243

244 Linking inflammatory cytokines to P. falciparum-induced NK cell activation

245 In vitro studies with human cells and in vivo studies with animal models have all demonstrated that 

246 NK cells are dependent upon accessory cells and inflammatory cytokines to respond to malaria 

247 parasite iRBC. Neutralisation of IL-12 and IL-18 abrogated the NK cell IFN- response to P. 

248 falciparum iRBC and schizont lysates 50. Subsequent studies have demonstrated a requirement for 

249 contact between primary NK cells and accessory cells implying that, in addition to accessory cell-

250 derived cytokines, cell contact is necessary for full activation (Figure 2). An array of myeloid and T 

251 cell-derived NK cell-activating cytokines are induced by P. falciparum iRBC stimulation of human 

252 PBMC, with upregulation of IL-12, IL-15 and IL-18 RNA and IL-2 and IL-12 proteins detected in vitro 

253 51. In addition to IFN- production, many studies have also demonstrated the induction of IL-2R 

254 (CD25) on the NK cell surface indicating that IL-2 from malaria specific CD4+ T cells may synergise 
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255 with innate cytokines in NK cell responses to iRBC 52,53. Indeed, the contribution of both accessory 

256 cell- and CD4+ T cell-derived cytokines to the NK cell response was subsequently confirmed by IL-

257 12, IL-18 and IL-2 neutralisation, anti-IFN-R2 and MHC class II blockade, and CD4+ T cell 

258 depletion from PBMC cultures prior to activation with iRBC 54. Interestingly, in this system IFN- 

259 production from NK cells preceded that of CD4+ T cells, consistent with a dominant contribution of 

260 NK cells to the early immune response to iRBC.

261 One feature of these in vitro systems is potent responses by CD56bright(KIR-) NK cells and CD56dim 

262 NK cells expressing CD94-NKG2A, which is consistent with the activation of less-differentiated NK 

263 cells as might be expected for cytokine-driven responses determined by the constitutive expression 

264 or upregulation of the appropriate cytokine receptors 51,53,55. Contact-dependent signals for NK cell 

265 responses to iRBC seem to be largely restricted to the level of accessory cells where LFA-1 on NK 

266 cells may promote association with cytokine-producing accessory cells via interaction with ICAM-1 

267 51,52 (Figure 2). By contrast, the need for direct contact between NK cells and iRBC is much less 

268 clear. 

269 Although NK cells have been shown to form stable conjugates with iRBC 52,53 and purified NK cells 

270 respond to P. falciparum iRBC with a gene expression signature that is very different to that induced 

271 simply by exposing them to IL-12 + IL-18  (suggesting that additional activation signals may be 

272 provided by conjugate formation), 56 there is, as yet, no convincing evidence that direct contact with 

273 iRBC is essential for NK activation, and no activating (or inhibitory) receptor-ligand interactions have 

274 been defined. Early reports 57,58 suggested a role for interaction between the Duffy binding like 

275 domain DBL-1 of P. falciparum erythrocyte membrane protein-1 (PfEMP-1) and the natural 

276 cytotoxicity receptor NKp30 (and to a lesser extent NKp46) but have not been confirmed, although 

277 an association has been observed between polymorphisms in the NCR3 gene encoding NKp30 and 

278 the frequency of mild malaria episodes 57,58. Another study indicated that chondroitin sulfate modified 

279 proteins on human NK cell lines can mediating binding to PfEMP-1 on the iRBC surface, but there 

280 was no evidence that this led to NK cell activation 52.  More recently, a role has been suggested for 

281 P. falciparum-derived microvesicles containing long non-coding RNAs in direct activation of NK cells 
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282 via the cytosolic sensor MDA5 59. There is also evidence that iRBC can inhibit NK cell activation via 

283 the interaction of certain P. falciparum RIFIN proteins with LILRB1 (also known as LIR1, LAIR1 or 

284 CD85j), a lymphocyte expressed inhibitory receptor of the immunoglobulin superfamily, 60 but the 

285 relevance of this – or of any other form of direct contact between NK cells and iRBC – for NK cell 

286 activation or immunity to malaria is currently unclear.

287

288 Cytokine-induced NK cell responses in murine malaria 

289 The inevitable limitations associated with experimental studies of human malaria mean that many of 

290 our insights arise initially in animal models of malaria, especially rodent models. Murine malaria 

291 models currently provide evidence for both beneficial and harmful contributions of NK cells  - either 

292 controlling parasite burden or contributing to pathology. It has been recognised for some time that 

293 the genetic background of the host and the parasite species are important considerations influencing 

294 NK cell activity in these models 61,62. Nonetheless, these models offer the potential for the 

295 mechanistic dissection of the cytokine cascade and NK cell activation, and their contribution to the 

296 anti-parasite immune response. Cytokine-activated NK cells do appear to be involved in protection 

297 in acute P. chabaudi infection: IL-12 restores NK cell function and control of P. chabaudi AS 

298 parasitaemia in susceptible A/J mice whereas deletion of the IL-12 gene results in severely impaired 

299 IFN- production, increased peak parasitaemia and delayed resolution of infection in normally 

300 resistant C57BL/6 mice 63,64. Delayed parasite clearance also occurs in IL-15-/- C57BL6 mice and is 

301 associated with reduced NK cell and DC function 65. As described above for accessory cell 

302 dependence in human NK cell responses, DC-NK crosstalk is critical for NK cell IFN- dependent 

303 immunity to P. chabaudi in C57BL/6 mice 66. Further studies of P. chabaudi infection demonstrate 

304 waves of NK cell activation and proliferation in the blood and spleen with NK cell numbers peaking 

305 at the time of peak parasitaemia 67,68. IL-18-dependent induction of the high affinity IL-2R expression 

306 on NK cells and their production of IFN- occurred earlier and with higher magnitude after infection 

307 of C57/BL6 mice with non-lethal P.yoelii 17XL compared to the lethal P. yoelii M strain, consistent 

308 with a protective role for cross-talk between IL-2-producing T cells and NK cells in this model 69. 
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309 Furthermore, control of P.yoelii 17XL parasitaemia and survival were both impaired in CD36-

310 deficient C57BL/6 mice and this was associated with decreased production of IL-12, IL-18 and IL-

311 1, and subsequent decreased NK cell production of IFN- and TNF-, consistent with a role for 

312 interactions between NK cells and accessory cells in immunity 70.

313 If P. chabaudi and P. yoelii provide evidence for a protective role of cytokine-activated NK cells in 

314 controlling parasite replication and preventing death from hyperparasitaemia, P. berghei ANKA 

315 infection in C57BL/6 mice provides a model for NK cells to contribute to severe disease with 

316 reciprocal DC activation and IL-12-dependent NK cell responses being associated with severe 

317 inflammation, CD8+ T cell activation and onset of experimental cerebral malaria 71. Interestingly 

318 BALB/c mice, which are normally resistant to P. berghei ANKA, become susceptible to experimental 

319 cerebral malaria when backcrossed against the C57BL/6 NKC locus, implying a role for functional 

320 NK cell receptor involvement in susceptibility to disease 72. Other studies suggest a role for NK cells 

321 in liver injury caused by P. berghei NK65 in C57BL/6 mice 73. 

322 The timing and magnitude of the NK cell response may however alter the course of disease in these 

323 infections. For example, expansion of the NK cell population by Flt3 ligand treatment of C57BL/6 

324 mice facilitates control of P. berghei ANKA parasitaemia and prevents the onset of experimental 

325 cerebral malaria via MyD88 and IFN- dependent pathways 74. More recently, a role for NK cell 

326 regulatory function in prevention of experimental cerebral malaria was demonstrated in P.berghei 

327 ANKA-infected C57/BL6 mice in which a therapeutic IL-15 complex induced IL-10-producing NK 

328 cells 75.

329 Further evidence for a role for NK cells during malaria infection comes from humanised mouse 

330 models of P. falciparum.  Depletion of NK cells and macrophages facilitates sporozoite infection of 

331 hepatocytes and growth of liver stage P. falciparum in humanised mice, suggesting a role for these 

332 cells in controlling pre-erythrocytic infection by an as yet undefined mechanism 76. Similarly, P. 

333 falciparum parasitaemia induces IL-12 and IFN- production one week post infection even in 

334 NOD/SCID mice in which NK cells are the only plausible source of this IFN- 77. Finally, depletion of 
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335 NK cells from immune cell optimised humanised (RICH) mice demonstrates a role for contact- 

336 dependent NK cell IFN- production in control of parasitaemia 78. 

337

338 NK cell activation during natural malaria infections 

339 Many studies associate the production of pro-inflammatory cytokines, including those which can 

340 activate NK cells, with severe malarial disease, raising the question of whether NK cell activation by 

341 these pathways necessarily contributes to protective immunity in susceptible human and animal 

342 hosts 79. In reality, given the heterogeneity in both functional differentiation of NK cells and 

343 inflammatory responses within the affected population, it is likely that the answer lies in both the 

344 concentrations of pro- and anti-inflammatory mediators being produced and the frequencies of 

345 different NK cell subsets responding to these mediators in a given individual. 

346 NK cell-activating, NK cell-derived and NK cell-modulating cytokines are all associated with the 

347 severity of malarial disease. For example, ratios of pro-inflammatory IL-12, IFN- and TNF- to anti-

348 inflammatory TGF-β and IL-10 in iRBC-stimulated whole blood were associated with protection 

349 against parasitaemia, clinical malaria and anaemia in a study of Ghanaian children 80 and reduced 

350 concentrations of plasma TGF-β and IL-12 were associated with severe malaria and cerebral malaria 

351 in Thai adults and Tanzanian children 81. Interestingly, in the latter study, plasma IL-18 was found at 

352 higher concentrations in people with uncomplicated malaria compared to uninfected controls but IL-

353 18 concentrations declined with increasing disease severity, suggesting that inflammatory mediators 

354 could be involved in the control of parasitaemia, thereby preventing disease 81. By contrast, studies 

355 in Mali and Malawi suggest a direct association between increasing plasma IL-12 concentrations 

356 and severe disease or cerebral malaria 82,83, perhaps revealing the importance of also considering 

357 the role of potentially disease-modifying concentrations of anti-inflammatory cytokines. NK cell 

358 activation (as defined by CD69 expression) was also elevated in cerebral malaria in a related study 

359 83. Whilst suggestive of a role for NK cell-activating and NK cell-modulating cytokines in determining 

360 the outcome of malaria infections, the currently available data are far from definitive 80,82,84,85. Firstly, 

361 few if any studies have sought to directly correlate plasma cytokine concentrations or in vitro 
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362 stimulated cytokine production with NK cell activation and function. Secondly, the vast majority of 

363 these studies are cross-sectional in design and therefore cannot infer causality from any of the 

364 associations detected. To fully understand the interplay between inflammation and NK cell 

365 responses and the implications of these for control of malaria infections, much more comprehensive, 

366 longitudinal studies are needed – including of controlled experimental human malaria infections – in 

367 which cellular and cytokine responses are followed over time, ideally including pre-infection and 

368 post-treatment time points.

369

370

371

372 Evidence for early NK cell activation during controlled human malaria infections 

373 As discussed above, controlled human malaria infections (CHMI) provide an opportunity for 

374 longitudinal studies of infections of known magnitude and duration, and the recent establishment of 

375 CHMI protocols in a number of laboratories - in endemic as well as non endemic areas - is providing 

376 a rich source of data on a variety of immune cells, including NK cells. Validating earlier in vitro studies 

377 54, infection of malaria naïve volunteers via the bites of P. falciparum sporozoite-infected mosquitoes, 

378 followed by drug cure at the onset of patent parasitaemia, increased the frequencies of both 

379 CD56bright and CD56dim NK cells producing IFN- due in part to the infection-induced differentiation 

380 of IL-2-producing malaria-specific memory T cells which potentiate innate NK cells responses 86,87. 

381 In a rather different study, using a blood stage inoculum to initiate infection, frequencies of NK cells 

382 and type 1 innate lymphoid cells (ILC-1) decreased in the blood as infection progressed but rapidly 

383 returned to pre-infection levels after treatment, suggesting that these cells may have been activated 

384 to express adhesion molecules, leading to transient sequestration in peripheral tissues 88. Similar 

385 observations of transient lymphocyte sequestration have long been reported in children naturally 

386 infected with malaria 89. Whilst these data are indicative of generalised lymphocyte activation during 

387 blood stage malaria infection, this tissue sequestration makes it very difficult to study malaria-
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388 reactive lymphocytes during acute infection since activated - and therefore putatively protective - 

389 cells are absent from the peripheral leukocyte population that can be sampled. This may, in part, 

390 explain why NK cell gene expression signatures were negatively correlated with and predicted 

391 protection following CHMI of individuals vaccinated with the RTS,S malaria vaccine 90. On the other 

392 hand, sporozoite-induced CHMI in a group of malaria-exposed but non-immune Tanzanian adults 

393 markedly reduced the proportion of circulating NK cells (and, at high doses of inoculating 

394 sporozoites, increased the frequencies of CD8+ mucosal associated invariant T cells, or MAIT cells) 

395 91. These changes persisted for several months after drug clearance of parasites, suggesting that in 

396 these individuals transient activation and sequestration may not explain lymphocyte dynamics 91. As 

397 discussed earlier, more comprehensive CHMI studies are needed to better understand the 

398 contribution of NK cells and other lymphocytes to malarial immunity, including ex vivo analysis of 

399 peripheral blood cell phenotype and function during acute disease and restimulation/recall response 

400 analysis after treatment and restoration of homeostasis. 

401

402 NK cells as adaptive effectors of acquired immunity to malaria.

403 There is abundant evidence from both vaccination and infection studies that NK cell function could 

404 be enhanced by T cell derived IL-2 54,92-95 and by specific antibodies 96-99 , each of which are 

405 hallmarks of an adaptive immune response. As discussed above, CD25 - a component of the high 

406 affinity receptor for IL-2 - is constitutively expressed on less differentiated human CD56bright NK cells 

407 and is induced by activation on more differentiated CD56dim NK cell subsets; CD25 is also a marker 

408 of activation in murine NK cells 17. 

409 Consistent with the ability of NK cells to integrate both innate and adaptive immune signals, IL-18 

410 plays a critical role in the induction of CD25 on NK cells in a number of infections, including murine 

411 CMV (MCMV) and murine malaria 17,69. Importantly, expression of IL-18R is maintained on the 

412 majority of human NK cells irrespective of their differentiation state, allowing them to continue to 

413 respond to IL-18 19. This is in sharp contrast to IL-12, where expression of the IL-12R 2 chain 

414 declines significantly and progressively as NK cells differentiate, making them less responsive or 

Page 16 of 39Immunological Reviews: Submitted manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

17

415 non-responsive to IL-12, which can otherwise potently synergise with IL-18 to enhance CD25 

416 expression in less differentiated human NK cells 18,19.  However, whether more highly differentiated 

417 NK cells, including both CD56dimCD57+NKG2C+ and adaptive CD56dimFcR1-/PLZF- subsets, 

418 remain sensitive to IL-2 is not yet entirely clear, although CD57+(NKG2C+/-) NK cells do have lower 

419 intrinsic proliferative capacity 93,100 and often respond poorly to T cell-activating recall antigens 18,19,93. 

420 If the reliance of these NK cell subsets on IL-2 is genuinely restricted, alternative factors such as IL-

421 15 may be required for their maintenance 18.  

422 Taking all the evidence together, it seems that as NK cells differentiate they progressively lose 

423 reliance on both innate cytokines and T cell derived IL-2 for their activation, and thus tend to produce 

424 less IFN-γ. Highly differentiated ‘adaptive’ NK cells ultimately become reliant on direct contact with 

425 target cells or immune complexes for their activation and thus on cytotoxic mechanisms of action; in 

426 the case of malaria infection this translates into an almost exclusive reliance on activation via CD16 

427 and antigen-IgG immune complexes and thus on ADCC as the primary NK cell-mediated effector 

428 mechanism. 

429 Evidence from in vitro studies and from longitudinal studies of human malaria infection supports the 

430 notion of a switch from innate cytokine/T cell-mediated NK cell activation towards protection 

431 dependent on malaria-specific antibody-dependent NK cell responses 10. Early observations of 

432 antibody-dependent NK cell activation in response to iRBC 101 have been confirmed by more recent 

433 studies providing convincing evidence that antibodies to P. falciparum PfEMP-1 and RIFINs (both of 

434 which are expressed at the surface of iRBC) can inhibit parasite replication and kill malaria-infected 

435 erythrocytes in vitro in the presence of NK cells derived from malaria naïve individuals 102. Of note, 

436 human anti-malarial antibodies belong almost exclusively to the IgG1 and IgG3 subclasses (the Fc 

437 regions of which preferentially bind CD16) and have repeatedly been associated with protective 

438 immunity to malaria 103-106. As ADCC is preferentially mediated by more differentiated 

439 CD56dimCD57+NKG2C+ and CD56dimFcR1-/PLZF- NK cells that accumulate with increasing age, 

440 NK cell maturation in combination with gradual acquisition of antibodies to a broad repertoire of 

441 PfEMP-1 and RIFIN serotypes may contribute to the well documented phenomenon of age- and 
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442 exposure-related acquisition of effective anti-malarial immunity.  The almost universal exposure to 

443 HCMV in sub-Saharan African populations, concomitant exposure to other pro-inflammatory 

444 infections (potentially including malaria itself) 7,107-109 and the consequent rapid accumulation of 

445 CD57+ NKG2C+ NK cells 36 may accelerate this process. In support of this hypothesis, a recent 

446 study in Malian children and young adults reported that peripheral blood frequencies of PLZF- 

447 adaptive NK cells were positively associated with ADCC against P. falciparum-infected erythrocytes 

448 and inversely correlated with parasite burden and probability of infection in the subsequent malaria 

449 season 110. 

450

451 Cytokine-dependent NK activation after malaria vaccination

452 The role of NK cells as effector cells of vaccine-induced protection has been proposed by ourselves 

453 and others (reviewed in 111). With regard to malaria, enhanced IFN- production by NK cells was 

454 demonstrated after RTS,S vaccination and was correlated with vaccine antigen-specific IL-2 

455 production 92. However, as described above, CHMI of RTS,S vaccinated individuals suggested an 

456 inverse correlation between NK associated gene signatures and protection 90, although this may 

457 simply reflect tissue sequestration of activated NK cells during active infection. On a more positive 

458 note, liver IL-12 and NK cell signatures were associated with protection in a P. chabaudi vaccination 

459 and challenge study 112,113 and a P. vivax vaccination study reported increased NK cell frequencies 

460 after vaccination 114.

461

462 Concluding remarks: the multifaceted role of NK cells in malaria 

463 Observations from natural human infection, in vitro systems and animal models broadly support the 

464 notion that NK cell responses to malaria in naïve or non-immune individuals are largely driven by 

465 innate, pro-inflammatory cytokines induced principally by erythrocytic stages of Plasmodium spp. 

466 We propose, therefore, that in malaria endemic populations, the gradual acquisition of acquired 

467 immune responses (both memory T cells and specific antibodies) is mirrored by rapid differentiation 
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468 of NK cells and accumulation of adaptive NK cells with potent ADCC capability; the transition from 

469 dependence on largely innate to largely adaptive NK cell-activating signals is smoothed by the ability 

470 of intermediate differentiation stages of NK cells to interpolate both sets of signals, including T cell-

471 derived IL-2 . Figure 3 shows a proposed model for the gradual evolution of the NK cell effector 

472 response to malaria-infected erythrocytes over the life course of an individual. In this model, age 

473 and exposure to HCMV and other pro-inflammatory infections (including malaria) leads to gradual 

474 differentiation of the NK cell population from being reliant for its activation on malaria-induced 

475 inflammatory cytokines towards increasing reliance on malaria antigen-antibody immune 

476 complexes. At the same time, acquisition of immune regulatory mechanisms that moderate the 

477 inflammatory cytokine response to malaria and the increasing diversity of the anti-malarial antibody 

478 response enable NK cells to mediate very effective ADCC responses and to clear the infection with 

479 minimal inflammation. If so, it should be possible to track this ‘evolution’ of the NK cell-mediated anti-

480 malarial immune response - both phenotypically and functionally – in malaria-exposed individuals to 

481 reveal informative, composite correlates of protection against malaria infection and disease. At the 

482 same time, the potential for anti-inflammatory cytokines (in particular IL-10 and TGF-) to moderate 

483 the function of less differentiated, cytokine-responsive and cytokine-producing NK cells should be 

484 explored.  In addition, given recent evidence from murine infection and vaccination models that NK 

485 cells may inhibit affinity maturation of immunoglobulins by negatively regulating somatic 

486 hypermutation in germinal centres 115,116, it may be of value to correlate NK cell phenotype and 

487 function with the affinity maturation of the anti-malarial antibody response. 

488 There is abundant evidence that host genetic diversity contributes to resistance/susceptibility to 

489 malaria and to variation in individual and population level NK cell responses to malaria parasites. 

490 The interaction between polymorphic inhibitory KIR and HLA class I molecules helps to determine 

491 the functional competence of NK cells 29 and a number of studies have suggested an association 

492 between KIR genotype and the severity of malaria disease 32,33,117,118. At the same time, 

493 polymorphisms in genes encoding cytokines and cytokine receptors 119-121 and immunoglobulin Fc 

494 receptors including CD16 and CD32 122-124 may affect the avidity of these interactions, the activation 

495 of NK cells and – directly or indirectly – the outcome of malaria infections. Traits that influence NK 
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496 cell differentiation may also have functional consequences: for example a deletion variant of NKG2C, 

497 present at high allele frequency in some African populations, is associated with delayed NK cell 

498 differentiation 36 and may have implications for the generation of effective ADCC responses to 

499 malaria. 

500 Lastly, differences in the functional and phenotypic characteristics of NK cells in the peripheral blood 

501 and tissues may merit consideration. The relative over-representation of less differentiated NK cells 

502 in secondary lymphoid organs and other tissues compared to peripheral blood, where highly 

503 differentiated CD16+ and ‘adaptive’ NK cell types tend to accumulate, may mean that the entire NK 

504 cell pool remains rather more diverse than might be apparent from the circulating NK cell population, 

505 with important consequences for immunity to malaria and other infections. As our understanding of 

506 the dynamic spectrum of NK cell differentiation and responsiveness during infection increases, we 

507 may likewise better understand the role of innate lymphocytes during anti-malarial immunity and in 

508 the evolution of natural protection against disease.

509

510
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516 Figure Legends

517 Figure 1. Human NK cell differentiation and adaptation. CD56bright NK cells express high levels of 

518 activating NCRs and cytokine receptors. As NK cells begin to differentiate, they begin to 

519 downregulate cytokine receptors and NCRs and to express CD16 and KIR. Highly differentiated NK 

520 cells express CD57, high levels of KIR and LIR-1, and may express CD94/NKG2C+ at high 

521 frequency.  Adaptive NK cells, which are assumed to differentiate from CD56dim (CD57- or CD57+) 

522 NK cells lose expression of the FcεR1γ adaptor protein and the transcriptional regulator PLZF. 

523

524 Figure 2. Activation of NK cells by malaria parasites. Myeloid cells (monocytes, macrophages and 

525 myeloid DCs) recognise soluble components of blood stage Plasmodium spp and phagocytose 

526 infected erythrocytes and extracellular parasites, leading to triggering of PRRs (including TLR4 and 

527 TLR9) and release of NK cell-activating pro-inflammatory cytokines. Myeloid cells also provide 

528 accessory signals to NK cells via cell surface receptors including adhesion molecules, leading to 

529 activation of NK cells and their secretion of IFN-γ. Plasmacytoid DC can additionally recognise 

530 parasite DNA (complexed to hemozoin or other parasite proteins) via TLR9-independent pathways, 

531 leading to type 1 interferon production and further activation of NK cells. Adapted from Newman and 

532 Riley 125 ; symbols as in Figure 1.

533

534 Figure 3. Model for the co-evolution of adaptive NK cells and anti-malarial immunity. With increasing 

535 age and repeated malaria infections, children in malaria endemic areas gradually acquire adaptive 

536 (T cell and antibody) immunity. At the same time, their NK cells gradually differentiate from cytokine-

537 activated/cytokine-producing cells to become specialised for ADCC. We propose, therefore that 

538 early in life (panel A) when antibodies are lacking, the NK cell response is driven by malaria-induced 

539 inflammation and NK cells secrete IFN-γ which enhances the phagocytic clearance of infected 

540 erythrocytes but may also contribute to inflammatory disease. With increasing age and malaria 

541 exposure (panel B), the acquisition of IL-2-producing memory T cells and anti-malarial antibodies 
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542 may enhance both cytokine-driven NK cell effector mechanisms and ADCC. In later life (panel C), 

543 an increasing ability to modulate (or actively regulate) the inflammatory response to malaria, 

544 combined with maturation of the anti-malarial antibody response and accumulation of “adaptive” NK 

545 cells, results in control of infection via very effective ADCC with minimal inflammation. Cells and 

546 symbols as shown in legend to Figures 1 and 2.
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