1,867 research outputs found
Variational Deep Semantic Hashing for Text Documents
As the amount of textual data has been rapidly increasing over the past
decade, efficient similarity search methods have become a crucial component of
large-scale information retrieval systems. A popular strategy is to represent
original data samples by compact binary codes through hashing. A spectrum of
machine learning methods have been utilized, but they often lack expressiveness
and flexibility in modeling to learn effective representations. The recent
advances of deep learning in a wide range of applications has demonstrated its
capability to learn robust and powerful feature representations for complex
data. Especially, deep generative models naturally combine the expressiveness
of probabilistic generative models with the high capacity of deep neural
networks, which is very suitable for text modeling. However, little work has
leveraged the recent progress in deep learning for text hashing.
In this paper, we propose a series of novel deep document generative models
for text hashing. The first proposed model is unsupervised while the second one
is supervised by utilizing document labels/tags for hashing. The third model
further considers document-specific factors that affect the generation of
words. The probabilistic generative formulation of the proposed models provides
a principled framework for model extension, uncertainty estimation, simulation,
and interpretability. Based on variational inference and reparameterization,
the proposed models can be interpreted as encoder-decoder deep neural networks
and thus they are capable of learning complex nonlinear distributed
representations of the original documents. We conduct a comprehensive set of
experiments on four public testbeds. The experimental results have demonstrated
the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure
Adversarial Personalized Ranking for Recommendation
Item recommendation is a personalized ranking task. To this end, many
recommender systems optimize models with pairwise ranking objectives, such as
the Bayesian Personalized Ranking (BPR). Using matrix Factorization (MF) ---
the most widely used model in recommendation --- as a demonstration, we show
that optimizing it with BPR leads to a recommender model that is not robust. In
particular, we find that the resultant model is highly vulnerable to
adversarial perturbations on its model parameters, which implies the possibly
large error in generalization.
To enhance the robustness of a recommender model and thus improve its
generalization performance, we propose a new optimization framework, namely
Adversarial Personalized Ranking (APR). In short, our APR enhances the pairwise
ranking method BPR by performing adversarial training. It can be interpreted as
playing a minimax game, where the minimization of the BPR objective function
meanwhile defends an adversary, which adds adversarial perturbations on model
parameters to maximize the BPR objective function. To illustrate how it works,
we implement APR on MF by adding adversarial perturbations on the embedding
vectors of users and items. Extensive experiments on three public real-world
datasets demonstrate the effectiveness of APR --- by optimizing MF with APR, it
outperforms BPR with a relative improvement of 11.2% on average and achieves
state-of-the-art performance for item recommendation. Our implementation is
available at: https://github.com/hexiangnan/adversarial_personalized_ranking.Comment: SIGIR 201
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Deep neural networks have emerged as a widely used and effective means for
tackling complex, real-world problems. However, a major obstacle in applying
them to safety-critical systems is the great difficulty in providing formal
guarantees about their behavior. We present a novel, scalable, and efficient
technique for verifying properties of deep neural networks (or providing
counter-examples). The technique is based on the simplex method, extended to
handle the non-convex Rectified Linear Unit (ReLU) activation function, which
is a crucial ingredient in many modern neural networks. The verification
procedure tackles neural networks as a whole, without making any simplifying
assumptions. We evaluated our technique on a prototype deep neural network
implementation of the next-generation airborne collision avoidance system for
unmanned aircraft (ACAS Xu). Results show that our technique can successfully
prove properties of networks that are an order of magnitude larger than the
largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that
appeared at CAV 201
The Case for Learned Index Structures
Indexes are models: a B-Tree-Index can be seen as a model to map a key to the
position of a record within a sorted array, a Hash-Index as a model to map a
key to a position of a record within an unsorted array, and a BitMap-Index as a
model to indicate if a data record exists or not. In this exploratory research
paper, we start from this premise and posit that all existing index structures
can be replaced with other types of models, including deep-learning models,
which we term learned indexes. The key idea is that a model can learn the sort
order or structure of lookup keys and use this signal to effectively predict
the position or existence of records. We theoretically analyze under which
conditions learned indexes outperform traditional index structures and describe
the main challenges in designing learned index structures. Our initial results
show, that by using neural nets we are able to outperform cache-optimized
B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over
several real-world data sets. More importantly though, we believe that the idea
of replacing core components of a data management system through learned models
has far reaching implications for future systems designs and that this work
just provides a glimpse of what might be possible
Morphology and miscibility of chitosan/soy protein blended membranes
A physico-chemical characterization of blended membranes composed by chitosan and soy protein has been carried out in order to
probe the interactions that allow membranes to be formed from these biopolymer mixtures. These membranes are developed aiming at
applications in wound healing and skin tissue engineering scaffolding. The structural features of chitosan/soy blended membranes were
investigated by means of solid state carbon nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), contact angle, and atomic
force microscopy. FTIR investigations suggested that chitosan and soy may have participated in a specific intermolecular interaction.
The proton spin–lattice relaxation experiments in the rotating frame on blended membranes indicated that independently of the preparation
conditions, the blend components are not completely miscible possibly due to a weak polymer–protein interaction. It was also
shown that the blended systems showed a rougher surface morphology which was dependent of soy content in the blend system
Reclaiming literacies: competing textual practices in a digital higher education
This essay examines the implications of the ubiquitous use of the term ‘digital literacies’ in higher education and its increasing alignment with institutional and organisational imperatives. It suggests that the term has been stripped of its provenance and association with disciplinary knowledge production and textual practice. Instead it is called into service rhetorically in order to promote competency based agendas both in and outside the academy. The piece also points to a tendency to position teachers in deficit with regard to their technological capabilities and pay scant attention to their own disciplinary and scholarly practices in a digital world. It concludes that there is a case for building on established theoretical and conceptual frameworks from literacy studies if we wish to integrate advantages of the digital landscape with thoughtful teaching practice
The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting
The numerous recent breakthroughs in machine learning (ML) make imperative to
carefully ponder how the scientific community can benefit from a technology
that, although not necessarily new, is today living its golden age. This Grand
Challenge review paper is focused on the present and future role of machine
learning in space weather. The purpose is twofold. On one hand, we will discuss
previous works that use ML for space weather forecasting, focusing in
particular on the few areas that have seen most activity: the forecasting of
geomagnetic indices, of relativistic electrons at geosynchronous orbits, of
solar flares occurrence, of coronal mass ejection propagation time, and of
solar wind speed. On the other hand, this paper serves as a gentle introduction
to the field of machine learning tailored to the space weather community and as
a pointer to a number of open challenges that we believe the community should
undertake in the next decade. The recurring themes throughout the review are
the need to shift our forecasting paradigm to a probabilistic approach focused
on the reliable assessment of uncertainties, and the combination of
physics-based and machine learning approaches, known as gray-box.Comment: under revie
- …