1,657 research outputs found

    Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance.The contribution of MG, KTR and JB was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA). MG and KT gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1. LT’s doctoral studentship is supported by the Alzheimer’s Society in partnership with the Garfield Weston Foundation (grant reference 231). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Estimation of brain network ictogenicity predicts outcome from epilepsy surgery

    Get PDF
    Surgery is a valuable option for pharmacologically intractable epilepsy. However, significant post-operative improvements are not always attained. This is due in part to our incomplete understanding of the seizure generating (ictogenic) capabilities of brain networks. Here we introduce an in silico, model-based framework to study the effects of surgery within ictogenic brain networks. We find that factors conventionally determining the region of tissue to resect, such as the location of focal brain lesions or the presence of epileptiform rhythms, do not necessarily predict the best resection strategy. We validate our framework by analysing electrocorticogram (ECoG) recordings from patients who have undergone epilepsy surgery. We find that when post-operative outcome is good, model predictions for optimal strategies align better with the actual surgery undertaken than when post-operative outcome is poor. Crucially, this allows the prediction of optimal surgical strategies and the provision of quantitative prognoses for patients undergoing epilepsy surgery.MG, MPR and JRT gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1. They further acknowledge funding from Epilepsy Research UK via grant number A1007 and the Medical Research Council via grant MR/K013998/1. The contribution of MG and JRT was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA). MPR is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at the South London and Maudsley NHS Foundation Trust. CR and AE were supported by the Swiss National Science Foundation (grant SPUM 140332). KS is grateful for support from the Swiss National Science Foundation (grants 122010 and 155950)

    Evaluating resective surgery targets in epilepsy patients: a comparison of quantitative EEG methods.

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.BACKGROUND: Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is nontrivial as a ground truth to verify predictions about hypothetical resections is missing. NEW METHOD: As one possibility to address this, we use customized hypotheses tests to examine the agreement of the methods on a common set of patients. One method uses machine learning techniques to enable the predictive modeling of EEG time series. The other estimates nonlinear interrelation between EEG channels. Both methods were independently shown to distinguish patients with excellent post-surgical outcome (Engel class I) from those without improvement (Engel class IV) when assessing the electrodes associated with the tissue that was actually resected during brain surgery. Using the AND and OR conjunction of both methods we evaluate the performance gain that can be expected when combining them. RESULTS: Both methods' assessments correlate strongly positively with the similarity between a hypothetical resection and the corresponding actual resection in class I patients. Moreover, the Spearman rank correlation between the methods' patient rankings is significantly positive. COMPARISON WITH EXISTING METHOD(S): To our best knowledge, this is the first study comparing surgery target assessments from fundamentally differing techniques. CONCLUSIONS: Although conceptually completely independent, there is a relation between the predictions obtained from both methods. Their broad consensus supports their application in clinical practice to provide physicians additional information in the process of presurgical evaluation.This work was supported by the Swiss National Science Foundation (SNF) (Project No: SNF 32003B 155950). M.G. gratefully acknowledges the financial support of the EPSRC via grant EP/N014391/1. The contribution of M.G. was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA)

    Computer models to inform epilepsy surgery strategies: prediction of postoperative outcome

    Get PDF
    This is the final version of the article. Available from OUP via the DOI in this record.M.G., M.P.R. and J.R.T. gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1. They further acknowledge funding from Epilepsy Research UK via grant number A1007 and the Medical Research Council via grant MR/K013998/1. The contribution of M.G. and J.R.T. was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA). M.P.R. is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at the South London and Maudsley NHS Foundation Trust. C.R. and A.E. were supported by the Swiss National Science Foundation (grant SPUM 140332). K.S. is grateful for support from the Swiss National Science Foundation (grants 122010 and 155950)

    Vibrotactile Signal Generation from Texture Images or Attributes using Generative Adversarial Network

    Full text link
    Providing vibrotactile feedback that corresponds to the state of the virtual texture surfaces allows users to sense haptic properties of them. However, hand-tuning such vibrotactile stimuli for every state of the texture takes much time. Therefore, we propose a new approach to create models that realize the automatic vibrotactile generation from texture images or attributes. In this paper, we make the first attempt to generate the vibrotactile stimuli leveraging the power of deep generative adversarial training. Specifically, we use conditional generative adversarial networks (GANs) to achieve generation of vibration during moving a pen on the surface. The preliminary user study showed that users could not discriminate generated signals and genuine ones and users felt realism for generated signals. Thus our model could provide the appropriate vibration according to the texture images or the attributes of them. Our approach is applicable to any case where the users touch the various surfaces in a predefined way.Comment: accepted for EuroHaptics 2018: Haptics: Science, Technology, and Applications, pp.25-3

    Elevated ictal brain network ictogenicity enables prediction of optimal seizure control

    Get PDF
    This is the final version of the article. Available from Frontiers Media via the DOI in this record.Recent studies have shown that mathematical models can be used to analyze brain networks by quantifying how likely they are to generate seizures. In particular, we have introduced the quantity termed brain network ictogenicity (BNI), which was demonstrated to have the capability of differentiating between functional connectivity (FC) of healthy individuals and those with epilepsy. Furthermore, BNI has also been used to quantify and predict the outcome of epilepsy surgery based on FC extracted from pre-operative ictal intracranial electroencephalography (iEEG). This modeling framework is based on the assumption that the inferred FC provides an appropriate representation of an ictogenic network, i.e., a brain network responsible for the generation of seizures. However, FC networks have been shown to change their topology depending on the state of the brain. For example, topologies during seizure are different to those pre- and post-seizure. We therefore sought to understand how these changes affect BNI. We studied peri-ictal iEEG recordings from a cohort of 16 epilepsy patients who underwent surgery and found that, on average, ictal FC yield higher BNI relative to pre- and post-ictal FC. However, elevated ictal BNI was not observed in every individual, rather it was typically observed in those who had good post-operative seizure control. We therefore hypothesize that elevated ictal BNI is indicative of an ictogenic network being appropriately represented in the FC. We evidence this by demonstrating superior model predictions for post-operative seizure control in patients with elevated ictal BNI.ML, MG, MR, and JT gratefully acknowledge funding from the Medical Research Council via grant MR/K013998/1. MG, MR, and JT further acknowledge the financial support of the EPSRC via grant EP/N014391/1. The contribution of MG and JT was further generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA). MR and EA are supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at the South London and Maudsley NHS Foundation Trust. KS gratefully acknowledges support by the Swiss National Science Foundation (SNF 32003B_155950)

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    What Models and Tools can Contribute to a Better Understanding of Brain Activity?

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData Availability Statement: The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.Despite impressive scientific advances in understanding the structure and function of the human brain, big challenges remain. A deep understanding of healthy and aberrant brain activity at a wide range of temporal and spatial scales is needed. Here we discuss, from an interdisciplinary network perspective, the advancements in physical and mathematical modeling as well as in data analysis techniques that, in our opinion, have potential to further advance our understanding of brain structure and function.Spanish Ministry of Science and InnovationState Research AgencySpanish Ministerio de Ciencia, Innovacion y UniversidadesCREA ACADEMIA program, Generalitat de Cataluny

    Geometric deep learning

    Get PDF
    The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas

    The multidisciplinary, theory-based co-design of a new digital health intervention supporting the care of oesophageal cancer patients

    Get PDF
    Objective: Oesophageal cancer patients have complex care needs. Cancer clinical nurse specialists play a key role in coordinating their care but often have heavy workloads. Digital health interventions can improve patient care but there are few examples for oesophageal cancer. This paper aims to describe the multidisciplinary co-design process of a digital health intervention to improve the experience of care and reduce unmet needs among patients with oesophageal cancer. Methods: A theory-based, multi-disciplinary, co-design approach was used to inform the developmental process of the digital health intervention. Key user needs were elicited using mixed methodology from systematic reviews, focus groups and interviews and holistic need assessments. Overarching decisions were discussed among a core team of patients, carers, health care professionals including oncologists and cancer clinical nurse specialists, researchers and digital health providers. A series of workshops incorporating a summary of findings of key user needs resulted in the development of a minimum viable product. This was further refined after a pilot study based on feedback from end users. Results: The final digital health intervention consists of a mobile app feature for patients and carers connected to a dashboard with supporting additional features for clinical nurse specialist. It contains a one-way messaging function for clinical nurse specialists to communicate with patients, functions for patients to record weight and holistic need assessment results which could be viewed by their clinical nurse specialists as well as a library of informative articles. Conclusions: The multidisciplinary co-design of a digital health intervention providing support for oesophageal cancer patients and health care professionals has been described. Future studies to establish its impact on patient outcomes are planned
    • …
    corecore