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Despite impressive scientific advances in understanding the structure and function of the
human brain, big challenges remain. A deep understanding of healthy and aberrant brain
activity at a wide range of temporal and spatial scales is needed. Here we discuss, from an
interdisciplinary network perspective, the advancements in physical and mathematical
modeling as well as in data analysis techniques that, in our opinion, have potential to further
advance our understanding of brain structure and function.
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1 INTRODUCTION

Over the last two decades, investigations of brain network structure and function—w.r.t. both
physiologic and pathophysiologic conditions—has gained strong impetus from the success made
in the quantitative analysis of complex networks (Bullmore and Sporns, 2009; Bullmore and
Sporns, 2012; Stam, 2014; Bassett and Sporns, 2017; Lynn and Bassett, 2019). Accompanied by
an ever increasing technology that allows access to brain structure and function at various spatial
and temporal scales, neuroscientific research (both basic science and clinically-oriented
research) has demonstrated a remarkable success in improving our knowledge of brain
network structure and function. Nevertheless, despite worldwide effort, huge gaps remain in
our understanding of how networks at various scales give rise to emergent dynamics, i.e., brain
function and dysfunction.

In this Perspective article, we argue that further progress on these problems would benefit from
effort invested in truly cross-disciplinary research (Wickson et al., 2006; Woolf, 2008). That is,
research in one discipline that not only utilises results coming from the other but also works back to
understand and leverage the reciprocal contribution. As well as uncovering potentially novel, fruitful
approaches, this might serve as a means to bring different communities closer together. Our aim here
is to highlight some approaches from our own research experience for which this reciprocal bridging
could be advanced.

We first concentrate on the sub-disciplines Data Analysis and (mathematical) Modeling that both
are often be assumed to be mature. Although it was repeatedly shown that advancements in one sub-
discipline can help to balance disadvantages in the other, both these sub-disciplines face serious
limitations when it comes to the brain’s structure-function relationship. We argue that progress here
could benefit from a greater emphasis on experiments to validate models and enhanced model
calibration. Closer cross-disciplinary links in the cycle of model refinement and checking would
facilitate progress here.
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We then offer two other concrete examples of neuroscience-
inspired research that could make a reciprocal contribution back
to neuroscience. These are from the (seemingly unrelated) sub-
disciplines—research into excitable optical systems (Photonic
Neurons) as well as into the co-existence of synchronization
and desynchronization (Chimera States). We suggest that these
largely experimental physics, and applied mathematics based
research directions have a lot to offer back to the investigation
of the function of the brain, and that progress could be made in
the short to medium term.

2 DATA ANALYSIS

Data-driven approaches continue to contribute to improve our
understanding of function and structure of the complex system
that is the brain. Current approaches are typically based on
different concepts from mathematics, physics, or computer
science and provide various indices that aim at characterizing
different (linear or nonlinear) properties of some dynamics as
wells as of properties of interactions (strength, direction,
functional form) between two or more (sub-)systems
(Lehnertz et al., 2014; Lehnertz et al., 2017 and references
therein). Approaches that characterize properties of
interactions form the basis (so called “functional” and
“effective” connectivity) of a data-driven construction of
functional brain networks (Eguıluz et al., 2005; Bullmore and
Sporns, 2009; Bullmore and Sporns, 2012; Stam, 2014; Bassett and
Sporns, 2017; Lynn and Bassett, 2019). These approaches are
backed up with a variety of imaging techniques (Sporns, 2011;
Fornito et al., 2015; Rockland, 2015; Fornito et al., 2019;
Sotiropoulos and Zalesky, 2019; Sarwar et al., 2021; Yeh et al.,
2021; Gosak et al., 2022) that aim at characterizing the so called
“structural” connectivity, which is often considered ground truth
and underlying constraint on “functional”/“effective”
connectivity. Structural information is mostly derived from
magnetic-imaging-based techniques such as diffusion tensor
imaging (DTI). Although widely employed, DTI has severe
limitations as it does not allow to recognize crossing fibers
and it fails to identify/visualize fibers along and within cortical
surface (Mori and Zhang, 2006). By now, there are no commonly
accepted means to validate DTI findings.

Time series analysis approaches to characterize the strength
of (pairwise) interactions are often assumed to be mature as they
allow one to characterize interactions between sequences of
amplitudes, phases, frequencies (or mixtures of the latter),
interactions between representations of the dynamics in state
space, between information flows, and even interactions
between stochastic dynamics. Time series analysis approaches
to characterize the direction of interactions, however, need
further development. Findings that can be achieved with
many of the currently available techniques require careful
interpretation (ideally with the help of appropriate surrogate
techniques yet to be developed) as they touch upon the
notoriously difficult issue of identifying causal relationships
(Mayr, 1961; Laland et al., 2011). Time series analysis
approaches to characterize the functional form of an

interaction have been developed only recently, and are
mostly restricted to phase-based interactions (Stankovski
et al., 2017).

With many of the aforementioned techniques to derive
characteristics of pairwise interactions from observations,
interactions are assumed to be constant (at least during the
investigated time interval). This assumption might not be fully
justified for the inherently nonstationary system brain,
notwithstanding the wide range of endogenous and exogenous
biological rhythms impacting differently on its structure and
function (Lehnertz et al., 2021). Another and long-standing
issue (e.g., Zentgraf, 1975) centers around identifying and
characterizing higher-order interactions, i.e., interactions that
cannot be reduced to pairwise interactions. Although this issue
recently has received increasing attention (e.g., Schneidman et al.
(2006); Benson et al. (2016); Lambiotte et al. (2019); Battiston
et al. (2020); Skardal and Arenas (2020); Battiston et al. (2021);
Lacasa et al. (2021); Zhang et al. (2021); Majhi et al. (2022)), there
are by now no time series analysis techniques suited to sufficiently
characterize higher-order interaction from observations of brain
dynamics.

Developments along the aforementioned lines need to be
accompanied by necessary advancements in network theory,
ranging from an improved characterization of weighted and
directed networks to the characterization of hypergraphs and
simplicial complexes. With an eye on applications, there is a
strong need for concepts and indices that allow one to reliably
compare and quantify differences in brain networks inferred from
data (Mheich et al., 2020). Eventually, future developments need
to respect the multi-scale character of the brain’s structure and
functions, ranging from single cells to larger brain regions, from
localized oscillations to scale-free dynamics, and with time scales
from a few minutes to several days and weeks and beyond (cf.
Gosak et al. (2018)).

3 MODELS

Many mathematical models have been developed and studied at
different spatial scales in the brain, i.e., from ion channels,
synapses and neuronal membranes through to the electrical
activity of the whole brain, as recorded by EEG. Modelling at
the single neuron scale, or smaller, could be considered to be the
most tractable, since relevant closed systems (e.g., synapses) can
be experimentally isolated, and parameters of the system (e.g.,
time scales) can be measured directly (e.g., Lee et al., 2015). At the
other end of the spatial scale, which we refer to as mesoscopic, or
macroscopic, we aim to model and understand the dynamics of
regions of brain tissue that contain many thousands of neurons
and other cells (Deco et al., 2008; Breakspear, 2017). This scale of
measurement is important since it is the level at which human
brain dynamics, and whole brain dynamics consisting of
integrated brain systems, can most often be recorded (e.g.,
using fMRI, EEG and MEG in humans). Given the complexity
of interacting processes that give rise to this kind of data,
mathematical models are crucial for understanding the brain
at this scale (Breakspear, 2017).
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Macroscopic brain models can be roughly grouped according
to the different kinds of assumption they make in their derivation
(Deco et al., 2008; Breakspear, 2017). Despite their differences,
most make use of building blocks that represent, in their simplest
forms, interactions between excitatory and inhibitory neuronal
populations. The parameter values that govern macroscopic
dynamics in these models are often based upon findings at the
microscopic level (Rall, 1967; Lopes da Silva et al., 1974; Freeman,
1975). Of course simplifications have to be made, and
assumptions can be made explicit. However, macroscopic
brain dynamics emerge from underlying complex systems in
tissues that comprise varied, heterogeneous cells and
molecules. This means that macroscopic model parameters
cannot be constrained solely by knowledge at the neuronal
level. We should therefore study large ranges of parameters in
our models in order to fully explore which model settings can
plausibly recreate features of the data (Ferrat et al., 2018), and we
should expect there to be multiple parameter regions that are
plausible (Hartoyo et al., 2019). This could mean different
inferences from the same data and model, depending upon
which region of parameter space is studied. In addition,
further research is required to better understand the link
between microscopic mechanisms and parameters of
macroscopic brain models. This can be done by comparing
the dynamics of models at different scales (Wendling et al.,
2012) and by using perturbations in experimental systems to
test the validity of macroscopic model assumptions and
predictions. Examples of this kind of research are surprisingly
lacking (Freeman, 1975; Moran et al., 2011), particularly studies
making use of current methodologies like optogenetics (Bernal-
Casas et al., 2017). All of these endeavours will require
developments in how we explore the parameters of (often
high-dimensional) macroscopic models, and how we compare
model output to data. Standard frameworks that exist, such as
dynamic causal modelling (Friston et al., 2019), are not designed
to fully explore large, minimally constrained parameter spaces.
They often rely on linearisation of models (West et al., 2021) and
linear data features such as the power spectrum.

Macroscopic models could also help us understand the longer
time scales of brain dynamics such as those governing the
recurrence of seizures in epilepsy (Suffczynski et al., 2004;
Lytton, 2008; Goodfellow et al., 2011; Maturana et al., 2020)
or fluctuations in the alpha rhythm (Freyer et al., 2011). From the
dynamical systems perspective, mechanisms exist that can give
rise to a repertoire of long term, fluctuating behaviour such as
different types of intermittency (Pomeau and Manneville, 1980;
Platt et al., 1993; Velazquez et al., 1999; Goodfellow et al., 2011),
heteroclinic switching (Rabinovich et al., 2014) and multistability
(Golos et al., 2016). Determining if these mechanisms are
responsible for a given recording of long term brain dynamics
will be challenging, since few such recordings exist (Weisdorf
et al., 2019; Duun-Henriksen et al., 2020; Maturana et al., 2020;
Zaer et al., 2021) and none are yet publically available. Further, we
do not yet know how to rule out alternative mechanisms that
could equally well account for observations like critical slowing
down (Milanowski and Suffczynski, 2016; Wilkat et al., 2019;
Maturana et al., 2020; Hagemann et al., 2021). Other

models—including physiological models—that have some of
the alternative dynamic mechanisms named above, can
presumably yield a repertoire of long term dynamics,
depending upon their parameterisation (Goodfellow et al.,
2012 unpublished).

4 PHOTONIC NEURONS

Photonic neurons are optical systems with neuron-like output
signals (e.g., Coomans et al., 2011; Nahmias et al., 2013;
Dolcemascolo et al., 2018; Tiana-Alsina et al., 2019; Robertson
et al., 2021). A lot of research is nowadays focused on building
photonic neurons able to accurately mimic the way neurons
process information, and to demonstrate that such photonic
neurons can perform information processing tasks such as
sensing, classification, or logic operations using efficient, noise-
robust neural coding mechanisms. Interest is driven by the fact
that photonics neurons are not only energy-efficient, but also,
ultra-fast, and have potential to process information orders of
magnitude faster than biological neurons, or current silicon
technology (e.g., Shastri et al., 2021 and references therein).

A key ingredient of neuronal dynamics is excitability, and for
implementing photonics neurons, it is crucial to identify suitable
excitable optical systems. The dynamics of an excitable system
has the following characteristics: 1) An input below a threshold
results in a small amplitude response; 2) an input above the
threshold elicits a spike; 3) a stronger input does not change the
shape of spike; 4) two well separated super-threshold inputs elicit
two spikes; 5) if the two inputs are too close in time (the interval
between them being smaller than a refractory period) the second
input does not elicit a spike. These characteristics have been
observed in inexpensive, energy-efficient semiconductor (diode)
lasers, under optical perturbations (e.g., Giudici et al., 1997;
Wieczorek et al., 2002; Garbin et al., 2017; Robertson et al.,
2020). However, when comparing the (experimentally recorded)
laser response to weak periodic inputs, with a neural response
(simulated with a simple neuron model), some significant
statistical differences have been uncovered (Tiana-Alsina et al.,
2019). It is still not clear which types of neurons the different
excitable laser systems may represent, and more research is
needed for performing an in-depth comparison of the
statistical properties of spike sequences (optical and neural)
emitted under different types of external inputs. For example,
it was recently shown that neuronal ensembles could encode weak
inputs using symbolic spike patterns (Masoliver and Masoller,
2020), and arrays of excitable lasers may be used for testing this
possibility.

Photonic neuromorphic computing is the research field that
aims at using photonic neurons and neuronal mechanisms of
information coding and processing for implementing ultra-fast
photonic artificial neural networks (ANNs). In recent years,
impressive advances have been made in improving the
performance of photonic ANNs by developing efficient
training methods, expanding the number of nodes and
integrating them into silicon chips (e.g., Antonik et al., 2020;
Lugnan et al., 2020). However, important challenges remain: how
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to identify conditions in which the spikes emitted by photonic
neurons genuinely represent neuronal spikes, and how to
implement in photonic neurons the efficient mechanisms by
which neurons encode, transmit and process weak external
inputs in noisy environments, exploiting nonlinear phenomena
such as excitability, bistability and stochastic resonance (Barbay
et al., 2000; Marino et al., 2002).

Single neurons and neuronal populations use different coding
mechanisms depending on the type of input, and neuronal
responses at different timescales may encode different features
of an input (e.g., Quiroga and Panzeri, 2013). An important open
challenge is to understand how these coding mechanisms can be
implemented in photonic neurons, where various noise sources
(optical, electrical, thermal, and mechanic) can play a role similar
to neural noise in biological neurons.

Advances in this field can be expected to also have an impact in
neuroscience, since photonic neurons that emit optical spikes that
are very similar (and perhaps not even distinguishable from)
neural spikes will allow to perform controlled experiments, to
advance the understanding of the generation and propagation of
spiking activity in neural networks.

Research on nonlinear photonic systems may also allow to
advance other problems that are relevant to neuroscience. An
example is how to infer reliable indicators of an approaching
transition to a different, and potentially dangerous, dynamical
regime (e.g., an epileptic seizure). In terms of dynamical systems,
such transitions may result from a time-varying parameter that
crosses a bifurcation point. In this context, lasers have been used
as “toy models” because they allow to perform controlled
experiments, to test the capability of new time series analysis
tools for providing reliable indicators alerting of incoming
bifurcations (e.g., Masoller et al., 2015; Marconi et al., 2020,
where the abrupt switching of the polarization of the emitted light
and the crossing of the laser threshold were used to analyze the
suitability of a well-known indicator—critical slowing down—to
provide reliable warning of the dynamical transition).

5 CHIMERA STATES

The term chimera states refers to the co-existence of
synchronization and desynchronization in networks of coupled
dynamics. These peculiar states were first described in ring
networks of non-locally coupled phase oscillators (Kuramoto
and Battogtokh, 2002; Abrams and Strogatz, 2004). In this
classical model, all oscillators are identical and the coupling is
the same for all oscillators. Accordingly, when one moves along
the extension of the ring network, the structure remains the same
everywhere. The network has translational symmetry. Intuition
might therefore suggest that the dynamics should be qualitatively
the same for all oscillators. Either they should all synchronize, or
they should all evolve mutually incoherently. However, for some
ranges of the network parameters, this expectation is wrong, and
the symmetry of the network structure is broken by the
oscillators’ temporal evolution. After being started with
random initial conditions, the oscillators spontaneously
segregate into two complementary groups. While one group of

oscillators rotates in coherence, the remaining ones perform an
erratic motion. This counterintuitive coexistence of
synchronization and desynchronization in all-identical
elements defines chimera states.

Chimera state networks are an example for a mathematical
model system that has a very simple formulation but still
generates highly complex dynamics. The study of such simple
models can help to understand complex real-world dynamics
avoiding the need to resort to overly complicated mechanisms. In
2012, and in the years to follow, it was shown that chimeras can be
implemented in experimental setups (e.g., Hagerstrom et al.,
2012; Tinsley et al., 2012; Totz et al., 2018; Ebrahimzadeh
et al., 2020; Gambuzza et al., 2020), providing first evidence
that chimera states do not only exist in mathematical models but
can also play a role in real-world dynamics. In parallel, various
conceptual links were established between chimeras and a variety
of natural and man-made networks outside of experimental labs
(e.g., Sakaguchi, 2006; Abrams et al., 2008; Ramlow et al., 2019;
Calim et al., 2020; Gerster et al., 2020; Rontogiannis and Provata,
2021). Furthermore, approaches to control chimeras were
developed (e.g., Sieber et al., 2014; Bick and Martens, 2015;
Omelchenko et al., 2018; Ruzzene et al., 2019; Ruzzene et al.,
2020; Vadivasova et al., 2020; Zhang and Dai, 2022).

From early on, there was also a bidirectional transfer of
knowledge between research on chimera states and the
neurosciences. On the one hand, neuroscience inspired many
refinements and generalizations of the mathematical models.
Initially, chimera states were mostly studied in isolated single-
layer networks. Networks of neurons, however, are typically not
isolated but interact with other networks. Therefore, recent work
dealt with interactions of chimera states across coupled layers in
multilayer networks (e.g., Majhi et al., 2016; Maksimenko et al.,
2016; Andrzejak et al., 2017; Andrzejak et al., 2018; Sawicki et al.,
2019; Ruzzene et al., 2020; Vadivasova et al., 2020; Rontogiannis
and Provata, 2021; Chen et al., 2022). Moreover, various neuron
models were used instead of the simple phase oscillators as
network nodes (e.g., Sakaguchi, 2006; Hizanidis et al., 2014;
Hizanidis et al., 2016; Santos et al., 2017; Chouzouris et al.,
2018; Calim et al., 2020; Gerster et al., 2020; Provata and
Venetis, 2020; Glaze and Bahar, 2021; Rontogiannis and
Provata, 2021; Simo et al., 2021; Zhang and Dai, 2022). In
addition, either experimentally obtained real brain connectivity
data (e.g., Hizanidis et al., 2016; Santos et al., 2017; Chouzouris
et al., 2018; Bansal et al., 2019; Ramlow et al., 2019; Gerster et al.,
2020) or basic neuronal connectivity principles (e.g.,
Rontogiannis and Provata, 2021; Zhang and Dai, 2022) were
used to design mathematical model networks capable to show
chimera states. Finally, there is growing evidence that results from
chimera state networks can contribute to the understanding of
fundamental aspects in the balance between synchronization and
desynchronization in real neuronal dynamics (e.g., Sakaguchi,
2006; Abrams et al., 2008; Rothkegel and Lehnertz, 2014;
Andrzejak et al., 2016; Hizanidis et al., 2016; Chouzouris et al.,
2018; Bansal et al., 2019; Gerster et al., 2020; Glaze and Bahar,
2021; Rontogiannis and Provata, 2021).

It is important, however, to keep in mind that even if neuron
models and real brain connectivity are used, chimera state
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network models remain far too simple to be a realistic model of
the brain. As a consequence, conceptual links, such as the most
prominent one to unihemispheric sleep found in dolphins, birds
and other species (Abrams et al., 2008 and references therein),
should only be understood as analogies. Neither does a sleeping
hemisphere show full synchronization, nor does an awake
hemisphere show full desynchronization. Chimera states may
nonetheless be helpful for our understanding of this asymmetric
behavior of the two brain hemispheres in unihemispheric sleep.
In fact, it is perhaps the simplicity of the chimera networks which
make them powerful. They allow us to discover basic mechanisms
in the interplay of synchronization and desynchronization under
well-controlled conditions. In a subsequent step, similar
mechanisms can be searched for in neuronal dynamics. In the
opposite direction, one can aim to reconstruct peculiarities of
neuronal synchronization in a simplified way in chimera
networks. On the other hand, advancing the study of other
types of synchronization phenomena, such as cluster
synchronization, may also contribute to shedding light on
brain activity.

6 CONCLUSION

We have outlined challenges in physical and mathematical
modeling, and data analysis that should be addressed to tackle
deficits in our understanding of the brain as a complex,
networked dynamical system. Moreover, we proposed that
cross-fertilization of these disciplines, alongside neuroscience,
could facilitate significant advances in our knowledge of the
brain in health and disease. This could provide exciting
opportunities to further advance our understanding of brain
functions, brain machine interfaces or neurostimulation.

Furthermore, it could be key for the development of effective
and personalized treatments for brain disorders which
significantly affect the quality of life of the aging world
population.
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