1,971 research outputs found

    Phase Competition in Ln0.5a0.5mno3 Perovskites

    Full text link
    Single crystals of the systems Pr0.5(Ca1-xSrx)0.5MnO3, (Pr1-yYy)0.5(Ca1-xSrx)0.5MnO3, and Sm0.5Sr0.5MnO3 were grown to provide a series of samples with fixed ratio Mn(III)/Mn(IV)=1 having geometric tolerance factors that span the transition from localized to itinerant electronic behavior of the MnO3 array. A unique ferromagnetic phase appears at the critical tolerance factor tc= 0.975 that separates charge ordering and localized-electron behavior for t<tc from itinerant or molecular-orbital behavior for t>tc. This ferromagnetic phase, which has to be distinguished from the ferromagnetic metallic phase stabilized at tolerance factors t>tc, separates two distinguishable Type-CE antiferromagnetic phases that are metamagnetic. Measurements of the transport properties under hydrostatic pressure were carried out on a compositions t a little below tc in order to compare the effects of chemical vs. hydrostatic pressure on the phases that compete with one another near t=tc.Comment: 10 pages. To be publised in Phys. Rev.

    V-V Bond-Length Fluctuations in Vox

    Full text link
    We report a significantly stronger suppression of the phonon contribution to the thermal conductivity in VOx than can be accounted for by disorder of the 16 % atomic vacancies present in VO. Since the transition from localized to itinerant electronic behavior is first-order and has been shown to be characterized by bond-length fluctuations in several transition-metal oxides with the perovskite structure, we propose that cooperative V-V bond-length fluctuations play a role in VO similar to the M-O bond-length fluctuations in the perovskites. This model is able to account for the strong suppression of the thermal conductivity, the existence of a pseudogap confirmed by thermoelectric power, an anomalously large Debye-Waller factor, the temperature dependence of the magnetic susceptibility, and the inability to order atomic vacancies in VO.Comment: 5 pages, 5 figure

    Magneto-elastic coupling and unconventional magnetic ordering in triangular multiferroic AgCrS2

    Full text link
    The temperature evolution of the crystal and magnetic structures of ferroelectric sulfide AgCrS2 have been investigated by means of neutron scattering. AgCrS2 undergoes at TN = 41.6 K a first-order phase transition, from a paramagnetic rhombohedral R3m to an antiferromagnetic monoclinic structure with a polar Cm space group. In addition to being ferroelectric below TN, the low temperature phase of AgCrS2 exhibits an unconventional collinear magnetic structure that can be described as double ferromagnetic stripes coupled antiferromagnetically, with the magnetic moment of Cr+3 oriented along b within the anisotropic triangular plane. The magnetic couplings stabilizing this structure are discussed using inelastic neutron scattering results. Ferroelectricity below TN in AgCrS2 can possibly be explained in terms of atomic displacements at the magneto-elastic induced structural distortion. These results contrast with the behavior of the parent frustrated antiferromagnet and spin-driven ferroelectric AgCrO2

    On the nature of the magnetic ground-state wave function of V_2O_3

    Full text link
    After a brief historical introduction, we dwell on two recent experiments in the low-temperature, monoclinic phase of V_2O_3: K-edge resonant x-ray scattering and non-reciprocal linear dichroism, whose interpretations are in conflict, as they require incompatible magnetic space groups. Such a conflict is critically reviewed, in the light of the present literature, and new experimental tests are suggested, in order to determine unambiguously the magnetic group. We then focus on the correlated, non-local nature of the ground-state wave function, that is at the basis of some drawbacks of the LDA+U approach: we singled out the physical mechanism that makes LDA+U unreliable, and indicate the way out for a possible remedy. Finally we explain, by means of a symmetry argument related to the molecular wave function, why the magnetic moment lies in the glide plane, even in the absence of any local symmetry at vanadium sites.Comment: 7 pages, 1 figur

    Orbital order in classical models of transition-metal compounds

    Full text link
    We study the classical 120-degree and related orbital models. These are the classical limits of quantum models which describe the interactions among orbitals of transition-metal compounds. We demonstrate that at low temperatures these models exhibit a long-range order which arises via an "order by disorder" mechanism. This strongly indicates that there is orbital ordering in the quantum version of these models, notwithstanding recent rigorous results on the absence of spin order in these systems.Comment: 7 pages, 1 eps fi

    Metal-insulator transition in Nd1x_{1-x}Eux_{x}NiO3_{3} compounds

    Full text link
    Polycrystalline Nd1x_{1-x}Eux_{x}NiO3_3 (0x0.50 \leq x \leq 0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at \sim1000 ^\circC under oxygen pressures as high as 80 bar. X-ray Diffraction (XRD) and Neutron Powder Diffraction (NPD), electrical resistivity ρ(T)\rho(T), and Magnetization M(T)M(T) measurements were performed on these compounds. The results of NPD and XRD indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group PbnmPbnm. The analysis of the structural parameters revealed a sudden and small expansion of \sim0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of \sim0.003 \AA{} of the average Ni-O distance and a simultaneous decrease of \sim0.5- 0.5^\circ of the Ni-O-Ni superexchange angle. The ρ(T)\rho(T) measurements revealed a MI transition occurring at temperatures ranging from TMI193T_{\rm MI}\sim 193 to 336 K for samples with x=0x = 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO3_{3} during heating and cooling processes suggesting a first-order character of the phase transition at TMIT_{\rm MI}. The width of this thermal hysteresis was found to decrease appreciably for the sample Nd0.7_{0.7}Eu0.3_{0.3}NiO3_{3}. The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first order character of the transition in NdNiO3_{3}.Comment: 19 pages, 9 figure

    Optical investigation of the metal-insulator transition in FeSb2FeSb_2

    Full text link
    We present a comprehensive optical study of the narrow gap FeSb2FeSb_2 semiconductor. From the optical reflectivity, measured from the far infrared up to the ultraviolet spectral range, we extract the complete absorption spectrum, represented by the real part σ1(ω)\sigma_1(\omega) of the complex optical conductivity. With decreasing temperature below 80 K, we find a progressive depletion of σ1(ω)\sigma_1(\omega) below Eg280E_g\sim 280 cm1^{-1}, the semiconducting optical gap. The suppressed (Drude) spectral weight within the gap is transferred at energies ω>Eg\omega>E_g and also partially piles up over a continuum of excitations extending in the spectral range between zero and EgE_g. Moreover, the interaction of one phonon mode with this continuum leads to an asymmetric phonon shape. Even though several analogies between FeSb2FeSb_2 and FeSiFeSi were claimed and a Kondo-insulator scenario was also invoked for both systems, our data on FeSb2FeSb_2 differ in several aspects from those of FeSiFeSi. The relevance of our findings with respect to the Kondo insulator description will be addressed.Comment: 17 pages, 5 figure

    Influence of ion implantation on the magnetic and transport properties of manganite films

    Full text link
    We have used oxygen ions irradiation to generate controlled structural disorder in thin manganite films. Conductive atomic force microscopy CAFM), transport and magnetic measurements were performed to analyze the influence of the implantation process in the physical properties of the films. CAFM images show regions with different conductivity values, probably due to the random distribution of point defect or inhomogeneous changes of the local Mn3+/4+ ratio to reduce lattice strains of the irradiated areas. The transport and magnetic properties of these systems are interpreted in this context. Metal-insulator transition can be described in the frame of a percolative model. Disorder increases the distance between conducting regions, lowering the observed TMI. Point defect disorder increases localization of the carriers due to increased disorder and locally enhanced strain field. Remarkably, even with the inhomogeneous nature of the samples, no sign of low field magnetoresistance was found. Point defect disorder decreases the system magnetization but doesn t seem to change the magnetic transition temperature. As a consequence, an important decoupling between the magnetic and the metal-insulator transition is found for ion irradiated films as opposed to the classical double exchange model scenario.Comment: 27 pages, 11 Figure

    Trimer Formation and Metal-Insulator Transition in Orbital Degenerate Systems on a Triangular Lattice

    Full text link
    As a prototypical self-organization in the system with orbital degeneracy, we theoretically investigate trimer formation on a triangular lattice, as observed in LiVO2. From the analysis of an effective spin-orbital coupled model in the strong correlation limit, we show that the previously-proposed orbital-ordered trimer state is not the lowest-energy state for a finite Hund's-rule coupling. Instead, exploring the ground state in a wide range of parameters for a multiorbital Hubbard model, we find an instability toward a different orbital-ordered trimer state in the intermediately correlated regime in the presence of trigonal crystal field. The trimer phase appears in the competing region among a paramagnetic metal, band insulator, and Mott insulator. The underlying mechanism is nesting instability of the Fermi surface by a synergetic effect of Coulomb interactions and trigonal-field splitting. The results are compared with experiments in triangularlattice compounds, LiVX2 (X=O, S, Se) and NaVO2.Comment: 4 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    Influence of lattice distortion on the Curie temperature and spin-phonon coupling in LaMn0.5_{0.5}Co0.5_{0.5}O3_{3}

    Full text link
    Two distinct ferromagnetic phases of LaMn0.5_{0.5}Co0.5_{0.5}O3_{3} having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature Tc\textit{T}_{c} is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn - O - Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in Tc\textit{T}_{c}. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the Tc\textit{T}_{c}. Electrical transport properties of both the phases have been investigated based on the lattice distortion.Comment: 9 figure
    corecore