123 research outputs found

    North Atlantic Craton Conference: Preface to the thematic issue of Mineralogical Magazine

    Get PDF
    This is the final version of the article. Available from Mineralogical Society via the DOI in this record.N/

    Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordThe rare earth elements (REE) are critical raw materials for much of modern technology, particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition. Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn- to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralisation in syn- to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralisation in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralisation in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.European Union Horizon 2020Natural Environment Research Council (NERC

    Alkaline-Silicate REE-HFSE Systems

    Get PDF
    This is the final version. Available on open access from the Society of Economic Geologists via the DOI in this recordDevelopment of renewable energy infrastructure requires critical raw materials, such as the rare earth elements (REEs, including scandium) and niobium, and is driving expansion and diversification in their supply chains. Although alternative sources are being explored, the majority of the world’s resources of these elements are found in alkaline-silicate rocks and carbonatites. These magmatic systems also represent major sources of fluorine and phosphorus. Exploration models for critical raw materials are comparatively less well developed than those for major and precious metals, such as iron, copper, and gold, where most of the mineral exploration industry continues to focus. The diversity of lithologic relationships and a complex nomenclature for many alkaline rock types represent further barriers to the exploration and exploitation of REE-high field strength element (HFSE) resources that will facilitate the green revolution. We used a global review of maps, cross sections, and geophysical, geochemical, and petrological observations from alkaline systems to inform our description of the alkaline-silicate REE + HFSE mineral system from continental scale (1,000s km) down to deposit scale (~1 km lateral). Continental-scale targeting criteria include a geodynamic trigger for low-degree mantle melting at high pressure and a mantle source enriched in REEs, volatile elements, and alkalies. At the province and district scales, targeting criteria relate to magmatic-system longevity and the conditions required for extensive fractional crystallization and the residual enrichment of the REEs and HFSEs. A compilation of maps and geophysical data were used to construct an interactive 3-D geologic model (25-km cube) that places mineralization within a depth and horizontal reference frame. It shows typical lithologic relationships surrounding orthomagmatic REE-Nb-Ta-Zr-Hf mineralization in layered agpaitic syenites, roof zone REE-Nb-Ta mineralization, and mineralization of REE-Nb-Zr associated with peralkaline granites and pegmatites. The resulting geologic model is presented together with recommended geophysical and geochemical approaches for exploration targeting, as well as mineral processing and environmental factors pertinent for the development of mineral resources hosted by alkaline-silicate magmatic systems.European Union Horizon 202

    Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Get PDF
    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a ,25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.open1

    Biotransformation of lanthanum by Aspergillus niger

    Get PDF
    Lanthanum is an important rare earth element and has many applications in modern electronics and catalyst manufacturing. However, there exist several obstacles in the recovery and cycling of this element due to a low average grade in exploitable deposits and low recovery rates by energy-intensive extraction procedures. In this work, a novel method to transform and recover La has been proposed using the geoactive properties of Aspergillus niger. La-containing crystals were formed and collected after A. niger was grown on Czapek-Dox agar medium amended with LaCl 3. Energy-dispersive X-ray analysis (EDXA) showed the crystals contained C, O, and La; scanning electron microscopy revealed that the crystals were of a tabular structure with terraced surfaces. X-ray diffraction identified the mineral phase of the sample as La 2(C 2O 4) 3·10H 2O. Thermogravimetric analysis transformed the oxalate crystals into La 2O 3 with the kinetics of thermal decomposition corresponding well with theoretical calculations. Geochemical modelling further confirmed that the crystals were lanthanum decahydrate and identified optimal conditions for their precipitation. To quantify crystal production, biomass-free fungal culture supernatants were used to precipitate La. The results showed that the precipitated lanthanum decahydrate achieved optimal yields when the concentration of La was above 15 mM and that 100% La was removed from the system at 5 mM La. Our findings provide a new aspect in the biotransformation and biorecovery of rare earth elements from solution using biomass-free fungal culture systems. </p

    Connexin channels and phospholipids: association and modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood.</p> <p>Results</p> <p>Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred.</p> <p>Conclusion</p> <p>This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.</p

    Partial Netrin-1 Deficiency Aggravates Acute Kidney Injury

    Get PDF
    The netrin family of secreted proteins provides migrational cues in the developing central nervous system. Recently, netrins have also been shown to regulate diverse processes beyond their functions in the brain, incluing the ochrestration of inflammatory events. Particularly netrin-1 has been implicated in dampening hypoxia-induced inflammation. Here, we hypothesized an anti-inflammatory role of endogenous netrin-1 in acute kidney injury (AKI). As homozygous deletion of netrin-1 is lethal, we studied mice with partial netrin-1 deletion (Ntn-1+/− mice) as a genetic model. In fact, Ntn-1+/− mice showed attenuated Ntn-1 levels at baseline and following ischemic AKI. Functional studies of AKI induced by 30 min of renal ischemia and reperfusion revealed enhanced kidney dysfunction in Ntn-1+/− mice as assessed by measurements of glomerular filtration, urine flow rate, urine electrolytes, serum creatinine and creatinine clearance. Consistent with these findings, histological studies indicated a more severe degree kidney injury. Similarly, elevations of renal and systemic inflammatory markers were enhanced in mice with partial netrin-1 deficiency. Finally, treatment of Ntn-1+/− mice with exogenous netrin-1 restored a normal phenotype during AKI. Taking together, these studies implicate endogenous netrin-1 in attenuating renal inflammation during AKI

    The Rare Earth Elements: demand, global resources, and challenges for resourcing future generations

    Get PDF
    The rare earth elements (REE) have attracted much attention in recent years, being viewed as critical metals because of China’s domination of their supply chain. This is despite the fact that REE enrichments are known to exist in a wide range of settings, and have been the subject of much recent exploration. Although the REE are often referred to as a single group, in practice each individual element has a specific set of end-uses, and so demand varies between them. Future demand growth to 2026 is likely to be mainly linked to the use of NdFeB magnets, particularly in hybrid and electric vehicles and wind turbines, and in erbium-doped glass fiber for communications. Supply of lanthanum and cerium is forecast to exceed demand. There are several different types of natural (primary) REE resources, including those formed by high-temperature geological processes (carbonatites, alkaline rocks, vein and skarn deposits) and those formed by low-temperature processes (placers, laterites, bauxites and ion-adsorption clays). In this paper, we consider the balance of the individual REE in each deposit type and how that matches demand, and look at some of the issues associated with developing these deposits. This assessment and overview indicate that while each type of REE deposit has different advantages and disadvantages, light rare earth-enriched ion adsorption types appear to have the best match to future REE needs. Production of REE as by-products from, for example, bauxite or phosphate, is potentially the most rapid way to produce additional REE. There are still significant technical and economic challenges to be overcome to create substantial REE supply chains outside China
    corecore