17 research outputs found

    Intercalated soft-crystalline mesophase exhibited by an unsymmetrical twist-bend nematogen

    Get PDF
    A number of new states of matter have been reported in recent years for liquid crystal dimers, most notably the twist-bend nematic phase which exhibits spontaneous breaking of symmetry through the emergence of chiral structures in an achiral fluid. In this communication we report on an unsymmetrical liquid crystal dimer that exhibits a transition from the spontaneously chiral twist-bend nematic phase into a novel smectic liquid crystal phase

    Order Parameters, Orientational Distribution Functions and Heliconical Tilt Angles of Oligomeric Liquid Crystals

    Get PDF
    We compare the order parameters, orientational distribution functions (ODF) and heliconical tilt angles of the TB phase exhibited by a liquid-crystalline dimer (CB7CB) to a tetramer (O47) and hexamer (O67) by SAXS/WAXS. Following the N-TB phase transition we find that all order parameters decrease, and while 〈P2 〉 remains positive 〈P4 〉 becomes negative. For all three materials the order parameter 〈P6 〉 is near zero in both phases. The ODF is sugarloaf-like in the nematic phase and volcano-like in the TB phase, allowing us to estimate the heliconical tilt angle of each material and its thermal evolution. The heliconical tilt angle appears to be largely independent of the material studied despite the differing number of mesogenic units

    Progression from nano to macro science in soft matter systems: : dimers to trimers and oligomers in twist-bend liquid crystals

    Get PDF
    In this article we report on the characterization and properties of several unsymmetrical phenyl-benzoate bimesogens that exhibit the soft-matter, twist-bend nematic (NTB) phase. We use this study as a basis to examine the phase behaviour of associated novel trimeric and tetrameric materials, in order to investigate the potential for oligomeric materials to form the NTB phase. Based on our results we hypothesise that higher oligomers and even polymers are highly likely to exhibit the NTB phase, provided they retain a gross bent structure between consecutive mesogenic units. Thus we show at the level of nanoscale organization, dimers can template with respect to one another to form mesophases that are also found in macromolecular systems

    Molecular shape as a means to control the incidence of the nanostructured twist bend phase

    Get PDF
    Liquid crystalline phases with a spontaneous twist-bend modulation are most commonly observed for dimers and bimesogens with nonamethylene spacers. In order to redress this balance we devised a simple chemical intermediate that can be used to prepare unsymmetrical bimesogens; as a proof of concept we prepared and studied eleven novel materials with all found to exhibit the twist-bend phase and exhibit a linear relationship between TN-I and TTB-N. A computational study of the conformational landscape reveals the octamethyleneoxy spacer to have a broader distribution of bend-angles than the nonamethylene equivalent, leading to reductions in the thermal stability of the TB phase. This result indicates that a tight distribution of bend-angles should stabilise the TB phase and lead to direct TB-Iso phase transitions, and conversely a broader distribution should destabilise the TB phase which may allow new states of matter that are occluded by the incidence of this phase to be revealed

    A Nematic to Nematic Transformation Exhibited by a Rod-Like Liquid Crystal

    Get PDF
    A novel, highly polar rod-like liquid crystal was found to exhibit two distinct nematic mesophases (N and Nx). When studied by microscopy and X-ray scattering experiments, and under applied electric fields, the nematic phases are practically identical. However, calorimetry experiments refute the possibility of an intervening smectic mesophase, and the transformation between the nematic phases was associated with a weak thermal event. Analysis of measured dielectric data, along with molecular properties obtained from DFT calculations, applying the Maier-Meier relationship allowed for the degree of antiparallel pairing of dipoles in both nematic phases to be quantified. Based on the results, we conclude that the onset of the lower temperature phase is driven by the formation of antiparallel molecular associations

    Evaluation of 4-alkoxy-40-nitrobiphenyl liquid crystals for use in next generation scattering LCDs

    Get PDF
    We have prepared nine members of the 4-alkoxy-40-nitrobiphenyl family of liquid crystals and evaluated their thermal behaviour by a combination of polarised optical microscopy, differential scanning calorimetry and small angle X-ray scattering, as well as in single pixel scattering devices for use in backlight free liquid crystal displays (LCDs). Whereas homologues with shorter terminal aliphatic chains are nematogenic, those with longer aliphatic chain lengths exhibit an additional smectic A phase, identified as the subtype SmAD by SAXS with all materials having a D/L ratio (smectic layer spacing divided by molecular length) of 1.4. When doped with 0.1 wt% hexadecyltrimethylammonium perchlorate we observed that the SmAD phase of compound 9 could be switched with a relatively low voltage (58 VRMS, roughly half that required for the analogous nitrile). This apparent reduction in threshold voltage, which occurs as a consequence of switching from a nitrile- to a nitro- group, provides a new impetus to study alternative polar terminal groups when designing host materials for smectic A scattering devices

    A novel nematic-like mesophase induced in dimers, trimers and tetramers doped with a high helical twisting power additive

    Get PDF
    From the observation of a previously undiscovered nematic-like mesophase (NX) by Archbold et al., we report on several new binary liquid-crystalline mixtures between the high helical twisting power dopant RM1041 and a selection of dimers with varying average bend angles and conformational landscapes. We also report on mixtures between RM1041 and oligomeric LC materials. We find that dimers and oligomers exhibit not only chiral nematic and twist-bend modulated phases, but also the same NX phase reported by Archbold, indicating that this state of matter (the structure of which is yet to be definitively characterised) is exhibited by a wide range of materials. Mixtures of the dimer CB9CB with a selection of different chiral dopants suggest that it is the helical twisting power of the chiral additive that is responsible incidence of the NX phase

    Investigating the Cusp between the Nano- and Macro-sciences in Supermolecular Liquid-Crystalline Twist-Bend Nematogens

    Get PDF
    In this article we report the first known linear liquid-crystalline hexamer and in doing so demonstrate that higher oligomers and main chain polymers, with chemical structures based upon dimers and bimesogens, can exhibit the topical twist-bend ‘nematic’ mesophase. In doing so we find that there is continuation of properties and structures across the spectrum from dimer to polymer and possibly to macroscale objects such as helical flagella. This finding highlights the cross over from nanoscience based mainly on electrostatics and other non-covalent interactions to macroscience based mainly on molecular topology, density of packing, and minimisation of the free energy

    Experimental and molecular dynamics studies of anthraquinone dyes in a nematic liquid-crystal host: a rationale for observed alignment trends

    Get PDF
    Five anthraquinone dyes with bis(4-propylphenyl) substituents, connected via sulfide or amine linking groups at the 1,5-positions or directly at the 2,6-positions, have been studied as guests in the nematic liquid crystal host, E7. Polarized UV-visible absorption spectra of aligned samples were used to obtain experimental dichroic order parameters, which exhibit values in the range 0.51-0.74. Fully atomistic MD simulations of these guest-host systems were carried out, generally using default parameters but using new force constants derived here for the dyes containing flexible phenyl-sulfide and phenyl-amine linking groups. An analysis of the alignment of the dye molecules in these simulations provides calculated molecular order parameters, which are combined with calculated order parameters for the alignment of the transition dipole moments within the dyes, reported previously, to give calculated dichroic order parameters. The trend in the calculated dichroic order parameters between the dyes shows a good match with the trend in the experimental values, enabling the observed variation to be rationalised primarily by changes in the alignment of the calculated transition dipole moments within the dyes; the calculated molecular order parameters show a relatively small variation between the dyes. The results indicate that this computational approach may be used generally to rationalise trends in the alignment of guest molecules in liquid crystal hosts, suggesting that it may also be able to provide a predictive aid in the design of guest dyes
    corecore