32 research outputs found

    Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall

    Get PDF
    The shape and integrity of fungal cells is dependent on the skeletal polysaccharides in their cell walls of which β(1,3)-glucan and chitin are of principle importance. The human pathogenic fungus Candida albicans has four genes, CHS1, CHS2, CHS3 and CHS8, which encode chitin synthase isoenzymes with different biochemical properties and physiological functions. Analysis of the morphology of chitin in cell wall ghosts revealed two distinct forms of chitin microfibrils: short microcrystalline rodlets that comprised the bulk of the cell wall; and a network of longer interlaced microfibrils in the bud scars and primary septa. Analysis of chitin ghosts of chs mutant strains by shadow-cast transmission electron microscopy showed that the long-chitin microfibrils were absent in chs8 mutants and the short-chitin rodlets were absent in chs3 mutants. The inferred site of chitin microfibril synthesis of these Chs enzymes was corroborated by their localization determined in Chsp–YFP-expressing strains. These results suggest that Chs8p synthesizes the long-chitin microfibrils, and Chs3p synthesizes the short-chitin rodlets at the same cellular location. Therefore the architecture of the chitin skeleton of C. albicans is shaped by the action of more than one chitin synthase at the site of cell wall synthesis

    Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: relation with trophic conditions

    Get PDF
    Foraminiferal assemblages from the neritic environment reveal the palaeoecological impact of nutrient types in relation to shore distance and sedimentary setting. Comparatively proximal siliciclastic settings from the Boreal Domain (Brora section, Eastern Scotland) were dominated by inner−shelf primary production in the water column or in sea bottom, while in relatively seawards mixed carbonate−siliciclastic settings from the Western Tethys (Prebetic, Southern Spain), nutrients mainly derived from the inner−shelf source. In both settings, benthic foraminiferal assemblages increased in diversity and proportion of epifauna from eutrophic to oligotrophic conditions. The proximal setting example (Brora Brick Clay Mb.) corresponds to Callovian offshore shelf deposits with a high primary productivity, bottom accumulation of organic matter, and a reduced sedimentation rate for siliciclastics. Eutrophic conditions favoured some infaunal foraminifera. Lately, inner shelf to shoreface transition areas (Fascally Siltstone Mb.), show higher sedimentation rates and turbidity, reducing euphotic−zone range depths and primary production, and then deposits with a lower organic matter content (high−mesotrophic conditions). This determined less agglutinated infaunal foraminifera content and increasing calcitic and aragonitic epifauna, and calcitic opportunists (i.e., Lenticulina). The comparatively distal setting of the Oxfordian example (Prebetic) corresponds to: (i) outer−shelf areas with lower nutrient input (relative oligotrophy) and organic matter accumulation on comparatively firmer substrates (lumpy lithofacies group) showing dominance of calcitic epifaunal foraminifera, and (ii) mid−shelf areas with a higher sedimentation rate and nutrient influx (low−mesotrophic conditions) favouring potentially deep infaunal foraminifers in comparatively unconsolidated and nutrient−rich substrates controlled by instable redox boundary (marl−limestone rhythmite lithofacies).This research was carried out with the financial support of projects CGL2005−06636−C0201 and CGL2005−01316/BTE, and University of Oslo, Norway−Statoil cooperation. M.R. holds a Juan de la Cierva grant from the Ministry of Science and Technology of Spain

    Notice of annual general meeting and presidential address

    No full text

    Production of fructosyl transferase fromAureobasidium pullulans

    No full text

    Psammaplin A, a chitinase inhibitor isolated from the fijian marine sponge Aplysinella rhax

    No full text
    Several brominated tyrosine derived compounds, psammaplins A (1), K (2) and L (3) as well as bisaprasin (4) were isolated from the Fijian marine sponge Aplysinella rhax during a bioassay guided isolation protocol. Their structures were determined using NMR and MS techniques. Psammaplin A was found to moderately inhibit chitinase B from Serratia marcescens, the mode of inhibition being non-competitive. Crystallographic studies suggest that a disordered psammaplin A molecule is bound near the active site. Interestingly, psammaplin A was found to be a potent antifungal agent
    corecore