2,730 research outputs found

    A new high entropy alloy brazing filler metal design for joining skutterudite thermoelectrics to copper

    Get PDF
    A new High Entropy Alloy (HEA) in the ZnGaCu-(AuSn) system was designed to join skutterudite thermoelectrics (CoSb2.75Sn0.05Te0.20), with a diffusion barrier of Ni applied, to Cu. Such a joint could be part of a device for thermal energy recovery within automotive exhaust systems. A rapid large-scale screening calculation technique based on Python programming has been introduced to conduct the HEA selection process, resulting in a series of alloys, which have been experimentally verified. It is demonstrated that a particular ZnGaCu-(AuSn) HEA alloy can join Ni and Cu successfully; a good joint is formed, and the average electrical contact resistance of the interfaces after joining is promising at room temperature, which shows that it has the potential to improve on the existing fillers used in such applications. The alloy design methodology used here suggests a potential efficient route to design new filler metals for a wide array of applications in which existing filler metals are not suitable

    Improving the reliability and availability of railway track switching by analysing historical failure data and introducing functionally redundant subsystems

    Get PDF
    This is an Open Access Article. It is published by Sage under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Track switches are safety critical assets that not only provide flexibility to rail networks but also present single points of failure. Switch failures within dense-traffic passenger rail systems cause a disproportionate level of delay. Subsystem redundancy is one of a number of approaches, which can be used to ensure an appropriate safety integrity and/or operational reliability level, successfully adopted by, for example, the aeronautical and nuclear industries. This paper models the adoption of a functional redundancy approach to the functional subsystems of traditional railway track switching arrangements in order to evaluate the potential increase in the reliability and availability of switches. The paper makes three main contributions. First, 2P-Weibull failure distributions for each functional subsystem of each common category of points operating equipment are established using a timeline and iterative maximum likelihood estimation approach, based on almost 40,000 sampled failure events over 74,800 years of continuous operation. Second, these results are used as baselines in a reliability block diagram approach to model engineering fault tolerance, through subsystem redundancy, into existing switching systems. Third, the reliability block diagrams are used with a Monte-Carlo simulation approach in order to model the availability of redundantly engineered track switches over expected asset lifetimes. Results show a significant improvement in the reliability and availability of switches; unscheduled downtime reduces by an order of magnitude across all powered switch types, whilst significant increases in the whole-system reliability are demonstrated. Hence, switch designs utilising a functional redundancy approach are well worth further investigation. However, it is also established that as equipment failures are engineered out, switch reliability/availability can be seen to plateau as the dominant contributor to unreliability becomes human error

    Neurophysiology

    Get PDF
    Contains reports on four research projects.National Institutes of Health (Grant B-1865-(C3), Grant MH-04737-02)United States Air Force, Aeronautical Systems Division (Contract AF33(616)-7783)Teagle Foundation, IncorporatedBell Telephone Laboratories, Incorporate

    Health related quality of life outcomes in HIV-Infected patients starting different combination regimens in a randomised multinational trial: the INITIO-QoL Substudy

    Get PDF
    The health-related quality of life (HRQoL) outcomes in HIV-infected, treatment-naive patients starting different HAART regimens in a 3-year, randomized, multinational trial were compared. HRQoL was measured in a subgroup of patients enrolled in the INITIO study (153/911), using a modified version of the MOS-HIV questionnaire. The regimens compared in the INITIO trial were composed by two NRTIs (didanosine + stavudine) plus either an NNRTI (efavirenz) or a PI (nelfinavir), or both (efavirenz + nelfinavir). Primary HRQoL outcomes were Physical and Mental Health Summary scores (PHS and MHS, respectively). During follow-up, an increase of PHS score was observed in all treatment arms. The MHS score remained substantially unchanged with the four-drug combination and showed with both NNRTI- and PI-based three-drug regimens a marked trend toward improvement, which became statistically significant when a multiple imputation method was used to adjust for missing data. Overall, starting all the combination regimens compared in the INITIO study was associated with a maintained or slightly improved HRQOL status, consistently with the positive immunological and virological changes observed in the main study. The observed differences in the MHS indicate a possible HRQoL benefit associated to the use of three-drug, two-class regimens and no additional benefit for the use of four-drug, three-class regimens, confirming that three-drug, two-class regimens that include two NRTIs plus either an NNRTI or a PI should be preferred as initial treatment of HIV infection

    The inverse-Compton ghost HDF 130 and the giant radio galaxy 6C 0905+3955: matching an analytic model for double radio source evolution

    Full text link
    We present new GMRT observations of HDF 130, an inverse-Compton (IC) ghost of a giant radio source that is no longer being powered by jets. We compare the properties of HDF 130 with the new and important constraint of the upper limit of the radio flux density at 240 MHz to an analytic model. We learn what values of physical parameters in the model for the dynamics and evolution of the radio luminosity and X-ray luminosity (due to IC scattering of the cosmic microwave background (CMB)) of a Fanaroff-Riley II (FR II) source are able to describe a source with features (lobe length, axial ratio, X-ray luminosity, photon index and upper limit of radio luminosity) similar to the observations. HDF 130 is found to agree with the interpretation that it is an IC ghost of a powerful double-lobed radio source, and we are observing it at least a few Myr after jet activity (which lasted 5--100 Myr) has ceased. The minimum Lorentz factor of injected particles into the lobes from the hotspot is preferred to be γ∼103\gamma\sim10^3 for the model to describe the observed quantities well, assuming that the magnetic energy density, electron energy density, and lobe pressure at time of injection into the lobe are linked by constant factors according to a minimum energy argument, so that the minimum Lorentz factor is constrained by the lobe pressure. We also apply the model to match the features of 6C 0905+3955, a classical double FR II galaxy thought to have a low-energy cutoff of γ∼104\gamma\sim10^4 in the hotspot due to a lack of hotspot inverse-Compton X-ray emission. The models suggest that the low-energy cutoff in the hotspots of 6C 0905+3955 is γ≳103\gamma\gtrsim 10^3, just slightly above the particles required for X-ray emission.Comment: 9 pages, 3 figure
    • …
    corecore