839 research outputs found

    Size matters: a single representation underlies our perceptions of heaviness in the size-weight illusion.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tIn the size-weight illusion (SWI), a small object feels heavier than an equally-weighted larger object. It is thought that this illusion is a consequence of the way that we internally represent objects' properties--lifters expect one object to outweigh the other, and the subsequent illusion reflects a contrast with their expectations. Similar internal representations are also thought to guide the application of fingertip forces when we grip and lift objects. To determine the nature of the representations underpinning how we lift objects and perceive their weights, we examined weight judgments in addition to the dynamics and magnitudes of the fingertip forces when individuals lifted small and large exemplars of metal and polystyrene cubes, all of which had been adjusted to have exactly the same mass. Prior to starting the experiment, subjects expected the density of the metal cubes to be higher than that of the polystyrene cubes. Their illusions, however, did not reflect their conscious expectations of heaviness; instead subjects experienced a SWI of the same magnitude regardless of the cubes' material. Nevertheless, they did report that the polystyrene cubes felt heavier than the metal ones (i.e. they experienced a material-weight illusion). Subjects persisted in lifting the large metal cube with more force than the small metal cube, but lifted the large polystyrene cube with roughly the same amount of force that they used to lift the small polystyrene cube. These findings suggest that our perceptual and sensorimotor representations are not only functionally independent from one another, but that the perceptual system represents a more single, simple size-weight relationship which appears to drive the SWI itself.G. Buckingham was funded with a Banting Postdoctoral Fellowship awarded from the Natural Sciences and Engineering Council of Canada (NSERC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Falloff of the Weyl scalars in binary black hole spacetimes

    Full text link
    The peeling theorem of general relativity predicts that the Weyl curvature scalars Psi_n (n=0...4), when constructed from a suitable null tetrad in an asymptotically flat spacetime, fall off asymptotically as r^(n-5) along outgoing radial null geodesics. This leads to the interpretation of Psi_4 as outgoing gravitational radiation at large distances from the source. We have performed numerical simulations in full general relativity of a binary black hole inspiral and merger, and have computed the Weyl scalars in the standard tetrad used in numerical relativity. In contrast with previous results, we observe that all the Weyl scalars fall off according to the predictions of the theorem.Comment: 7 pages, 3 figures, published versio

    Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance.

    Get PDF
    PublishedJournal ArticleObserving the actions of others has been shown to modulate cortico-spinal excitability and affect behaviour. However, the sensorimotor consequences of observing errors are not well understood. Here, participants watched actors lift identically weighted large and small cubes which typically elicit expectation-based fingertip force errors. One group of participants observed the standard overestimation and underestimation-style errors that characterise early lifts with these cubes (Error video--EV). Another group watched the same actors performing the well-adapted error-free lifts that characterise later, well-practiced lifts with these cubes (No error video--NEV). We then examined actual object lifting performance in the subjects who watched the EV and NEV. Despite having similar cognitive expectations and perceptions of heaviness, the group that watched novice lifters making errors themselves made fewer overestimation-style errors than those who watched the expert lifts. To determine how the observation of errors alters cortico-spinal excitability, we measured motor evoked potentials in separate group of participants while they passively observed these EV and NEV. Here, we noted a novel size-based modulation of cortico-spinal excitability when observing the expert lifts, which was eradicated when watching errors. Together, these findings suggest that individuals' sensorimotor systems are sensitive to the subtle visual differences between observing novice and expert performance.G. Buckingham was supported with a Banting Postdoctoral Fellowship, awarded by the Natural Sciences and Engineering Council of Canada (NSERC

    Weightlifting exercise and the size-weight illusion

    Get PDF
    In the size-weight illusion (SWI), large objects feel lighter than equally weighted small objects. In the present study, we investigated whether this powerful weight illusion could influence real-lift behavior-namely, whether individuals would perform more bicep curls with a dumbbell that felt subjectively lighter than with an identically weighted, but heavier-feeling, dumbbell. Participants performed bicep curls until they were unable to continue with both a large, light-feeling 5-lb dumbbell and a smaller, heavy-feeling 5-lb dumbbell. No differences emerged in the amounts of exercise that participants performed with each dumbbell, even though they felt that the large dumbbell was lighter than the small dumbbell. Furthermore, in a second experiment, we found no differences in how subjectively tired participants felt after exercising for a set time with either dumbbell. We did find, however, differences in the lifting dynamics, such that the small dumbbell was moved at a higher average velocity and peak acceleration. These results suggest that the SWI does not appear to influence exercise outcomes, suggesting that perceptual illusions are unlikely to affect one's ability to persevere with lifting weights.The authors thank J. Ladich for his help with creating the stimuli. G.B. was supported with a Banting Postdoctoral Fellowship, awarded by the Natural Sciences and Engineering Research Council of Canada (NSERC)

    Saccade Latency Provides Evidence for Reduced Face Inversion Effects With Higher Autism Traits

    Get PDF
    © Copyright © 2020 Laycock, Wood, Wright, Crewther and Goodale. Individuals on the autism spectrum are reported to show impairments in the processing of social information, including aspects of eye-movements towards faces. Abnormalities in basic-level visual processing are also reported. In the current study, we sought to determine if the latency of saccades made towards social targets (faces) in a natural scene as opposed to inanimate targets (cars) would be related to sub-clinical autism traits (ATs) in individuals drawn from a neurotypical population. The effect of stimulus inversion was also examined given that difficulties with processing inverted faces are thought to be a function of face expertise. No group differences in saccadic latency were established for face or car targets, regardless of image orientation. However, as expected, we found that individuals with higher autism-like traits did not demonstrate a saccadic face inversion effect, but those with lower autism-like traits did. Neither group showed a car inversion effect. Thus, these results suggest that neurotypical individuals with high autism-like traits also show anomalies in detecting and orienting to faces. In particular, the reduced saccadic face inversion effect established in these participants with high ATs suggests that speed of visual processing and orienting towards faces may be associated with the social difficulties found across the broader autism spectrum

    Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style.

    Get PDF
    Saccadic suppression-the reduction of visual sensitivity during rapid eye movements-has previously been proposed to reflect a specific suppression of the magnocellular visual system, with the initial neural site of that suppression at or prior to afferent visual information reaching striate cortex. Dysfunction in the magnocellular visual pathway has also been associated with perceptual and physiological anomalies in individuals with autism spectrum disorder or high autistic tendency, leading us to question whether saccadic suppression is altered in the broader autism phenotype. Here we show that individuals with high autistic tendency show greater saccadic suppression of low versus high spatial frequency gratings while those with low autistic tendency do not. In addition, those with high but not low autism spectrum quotient (AQ) demonstrated pre-cortical (35-45 ms) evoked potential differences (saccade versus fixation) to a large, low contrast, pseudo-randomly flashing bar. Both AQ groups showed similar differential visual evoked potential effects in later epochs (80-160 ms) at high contrast. Thus, the magnocellular theory of saccadic suppression appears untenable as a general description for the typically developing population. Our results also suggest that the bias towards local perceptual style reported in autism may be due to selective suppression of low spatial frequency information accompanying every saccadic eye movement

    Introduction to dynamical horizons in numerical relativity

    Full text link
    This paper presents a quasi-local method of studying the physics of dynamical black holes in numerical simulations. This is done within the dynamical horizon framework, which extends the earlier work on isolated horizons to time-dependent situations. In particular: (i) We locate various kinds of marginal surfaces and study their time evolution. An important ingredient is the calculation of the signature of the horizon, which can be either spacelike, timelike, or null. (ii) We generalize the calculation of the black hole mass and angular momentum, which were previously defined for axisymmetric isolated horizons to dynamical situations. (iii) We calculate the source multipole moments of the black hole which can be used to verify that the black hole settles down to a Kerr solution. (iv) We also study the fluxes of energy crossing the horizon, which describes how a black hole grows as it accretes matter and/or radiation. We describe our numerical implementation of these concepts and apply them to three specific test cases, namely, the axisymmetric head-on collision of two black holes, the axisymmetric collapse of a neutron star, and a non-axisymmetric black hole collision with non-zero initial orbital angular momentum.Comment: 20 pages, 16 figures, revtex4. Several smaller changes, some didactic content shortene
    • …
    corecore