5 research outputs found

    Leakage Current Reduction in Single-Phase Grid-Connected Inverters—A Review

    No full text
    The rise in renewable energy has increased the use of DC/AC converters, which transform the direct current to alternating current. These devices, generally called inverters, are mainly used as an interface between clean energy and the grid. It is estimated that 21% of the global electricity generation capacity from renewable sources is supplied by photovoltaic systems. In these systems, a transformer to ensure grid isolation is used. Nevertheless, the transformer makes the system expensive, heavy, bulky and reduces its efficiency. Therefore, transformerless schemes are used to eliminate the mentioned disadvantages. One of the main drawbacks of transformerless topologies is the presence of a leakage current between the physical earth of the grid and the parasitic capacitances of the photovoltaic module terminals. The leakage current depends on the value of the parasitic capacitances of the panel and the common-mode voltage. At the same time, the common-mode voltage depends on the modulation strategy used. Therefore, by the manipulation of the modulation technique, is accomplished a decrease in the leakage current. However, the connection standards for photovoltaic inverters establish a maximum total harmonic distortion of 5%. In this paper an analysis of the common-mode voltage and its influence on the value of the leakage current is described. The main topologies and strategies used to reduce the leakage current in transformerless schemes are summarized, highlighting advantages and disadvantages and establishing points of comparison with similar topologies. A comparative table with the most important aspects of each converter is shown based on number of components, modes of operation, type of modulation strategy used, and the leakage current value obtained. It is important to mention that analyzed topologies present a variation of the leakage current between 0 to 180 mA. Finally, the trends, problems, and researches on transformerless grid-connected PV systems are discussed

    Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments

    No full text
    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation

    Electrostatic Fermentation: Molecular Response Insights for Tailored Beer Production

    No full text
    Electrostatic fermentation avoids the cellular redox imbalance of traditional fermentation, but knowledge gaps exist. This study explores the impact of electrostatic fermentation on the growth, volatile profile, and genetic response of Saccharomyces pastorianus Saflager S-23. The applied voltage (15 and 30 V) in the electrostatic fermentation system increased the growth and substrate utilization of S. pastorianus while decreasing ethanol production. The aromas typically associated with traditional fermentation, such as alcoholic, grape, apple, and sweet notes, were diminished, while aromas like roses, fruits, flowers, and bananas were augmented in electrostatic fermentation. RNA-seq analysis revealed upregulation of genes involved in cell wall structure, oxidoreductase activity, and iron ion binding, while genes associated with protein synthesis, growth control, homeostasis, and membrane function were downregulated under the influence of applied voltage. The electrostatic fermentation system modulates genetic responses and metabolic pathways in yeast, rendering it a promising method for tailored beer production. Demonstrating feasibility under industrial-scale and realistic conditions is crucial for advancing towards commercialization
    corecore