15,981 research outputs found
Lipase catalysed kinetic resolution of racemic 1,2-diols containing a chiral quaternary center
Optically active 1,2-diols are valuable buildings blocks in organic synthesis. In the present
paper, a set of racemic 1,2-diols with an ester functional group are prepared, starting from -ketoesters
in a three-step procedure with moderate yields. The racemic 1,2-diols, containing a chiral quaternary
center in their structure, are subjected to selective acylation in order to perform their kinetic resolution
catalysed by a set of commercially available lipases. Under optimized reaction conditions, good
conversions and enantioselectivities are achieved by using the lipase PSL-C from Pseudomonas
cepacia in tert-butyl methyl ether. This biocatalyst could be reused up to five times without losing
its properties.Ministerio de EconomÃa y Competitividad (contract RYC-2012-10014 for G.d.G., Grants CTQ2016-76908-C2-1-P and CTQ2016-76908-C2-2-P)European FEDER FundsJunta de AndalucÃa (Grant 2012/FQM 10787
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019)
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes
Asymptotically conical Ricci-flat Kahler metrics with cone singularities
The main result proved in this thesis is an existence theorem for asymptotically conical Ricci-flat Kahler metrics on C2 with cone singularities along a smooth complex curve. These metrics are expected
to arise as blow-up limits of non-collapsed sequences of Kahler-Einstein metrics with cone singularities.Open Acces
Biocatalyzed redox processes employing green reaction media
The application of biocatalysts to perform reductive/oxidative chemical processes has attracted great interest in recent years, due to their environmentally friendly conditions combined with high selectivities. In some circumstances, the aqueous buffer medium normally employed in biocatalytic procedures is not the best option to develop these processes, due to solubility and/or inhibition issues, requiring biocatalyzed redox procedures to circumvent these drawbacks, by developing novel green non-conventional media, including the use of biobased solvents, reactions conducted in neat conditions and the application of neoteric solvents such as deep eutectic solvents
Polycyclic Ketone Monooxygenase (PockeMO):A Robust Biocatalyst for the Synthesis of Optically Active Sulfoxides
A recently discovered, moderately thermostable Baeyer-Villiger monooxygenase, polycyclic ketone monooxygenase (PockeMO), from Thermothelomyces thermophila has been employed as a biocatalyst in a set of asymmetric sulfoxidations. The enzyme was able to catalyze the oxidation of various alkyl aryl sulfides with good selectivities and moderate to high activities. The biocatalytic performance was able to be further increased by optimizing some reaction parameters, such as the addition of 10% v v−1 of water miscible solvents or toluene, or by performing the conversion at a relatively high temperature (45 °C). PockeMO was found to display an optimum activity at sulfide concentrations of 50 mM, while it can also function at 200 mM. Taken together, the data show that PockeMO can be used as robust biocatalyst for the synthesis of optically active sulfoxides
Recent developments in the synthesis of β-diketones
Apart from being one of the most important intermediates in chemical synthesis, broadly used in the formation of C–C bonds among other processes, the β-dicarbonyl structure is present in a huge number of biologically and pharmaceutically active compounds. In fact, mainly derived from the well-known antioxidant capability associated with the corresponding enol tautomer, β-diketones are valuable compounds in the treatment of many pathological disorders, such as cardiovascular and liver diseases, hypertension, obesity, diabetes, neurological disorders, inflammation, skin dis-eases, fibrosis, or arthritis; therefore, the synthesis of these structures is an area of overwhelming interest for organic chemists. This paper is devoted to the advances achieved in the last ten years for the preparation of 1,3-diketones, using different chemical (Claisen, hydration of alkynones, decar-boxylative coupling) or catalytic (biocatalysis, organocatalytic, metal-based catalysis) methodologies: Additionally, the preparation of branched β-dicarbonyl compounds by means of α-functionalization of non-substituted 1,3-diketones are also discussed
- …