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Abstract

The main result proved in this thesis is an existence theorem for asymptotically conical Ricci-flat
Kähler metrics on C2 with cone singularities along a smooth complex curve. These metrics are expected
to arise as blow-up limits of non-collapsed sequences of Kähler-Einstein metrics with cone singularities.
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4.2 Weighted Hölder spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 A priori estimates for the Monge-Ampere equation 38
5.1 C0 estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 C2 estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 C2,α estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Weighted estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Proof of THEOREM 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conjectural picture 45
6.1 Convergence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Energy of the metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Cubics in CP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4 The case of a general smooth curve in C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1 Introduction

The first three subsections in this introduction are meant to explain the words in the title, to provide
background and to motivate the topic. The fourth subsection states the main result of the thesis and
outlines the strategy of proof.

1.1 Metrics with cone singularities

We introduce the concept of a Kähler metric with cone singularities along a divisor. There is a model
metric g(β) and several ways one can proceed to give distinct definitions, measuring the deviation from
the model in different norms. The one we give is well suited for the development of a linear theory. Our
reference is Section 4 in Donaldson’s paper [15].

Fix 0 < β < 1. On R2 \ {0} with polar coordinates (ρ, θ) consider the metric

gβ = dρ2 + β2ρ2dθ2. (1.1)
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This is the metric of a cone of total angle 2πβ. The apex of the cone is located at 0 and gβ is singular
at this point. We give two geometric pictures of gβ :

• Take a wedge of angle 2πβ in the Euclidean plane and use a rotation to identify the edges.

• Take a coordinate axis in R3 and a ray which starts at 0 and makes an angle ψ with the axis. We
ask that 0 < ψ < π/2 and sinψ = β. Consider the surface of revolution obtained by rotating the
ray around the axis.

Figure 1: The holonomy of gβ along a simple loop around the apex is an anti-clockwise rotation of angle
2π(1− β) in the sense of the metric gβ .

The metric gβ induces a complex structure on the punctured plane, given by an anti-clockwise rotation
of angle π/2. A basic fact is that we can change coordinates so that this complex structure extends
smoothly to the origin. Indeed, set

z1 = ρ1/βeiθ (1.2)

to get
gβ = β2|z1|2β−2|dz1|2. (1.3)

Denote by Cβ the complex plane endowed with the singular metric 1.3.
We are concerned with metrics which are modeled, in transverse directions to a divisor, by gβ . To

begin with we take the product of Cβ with Cn−1. If (z1, . . . , zn) are standard complex coordinates on
Cn, what we get is the model metric

g(β) = β2|z1|2β−2|dz1|2 +

n∑
j=2

|dzj |2; (1.4)

with a singularity along D = {z1 = 0}. Set {v1, . . . , vn} to be the vectors

v1 = |z1|1−β
∂

∂z1
, vj =

∂

∂zj
for j = 2, . . . n. (1.5)

Note that, with respect to g(β), these vectors are orthogonal and their length is constant. We move
on and consider the situation of a complex manifold X of complex dimension n and a smooth divisor
D ⊂ X. Let g be a smooth Kähler metric on X \ D and let p ∈ D. Take (z1, . . . , zn) to be complex
coordinates centered at p such that D = {z1 = 0}. In the complement of D we have smooth functions
gij given by gij = g(vi, vj).
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Definition 1 We say that g has cone angle 2πβ along D if for every p ∈ D and holomorphic coordinates
as above the functions gij admit a Hölder continuous extension to D. We also require the matrix (gij(p))
to be positive definite and that g1j = 0 when j ≥ 2 and z1 = 0.

We make two remarks on this definition

• It requires a simple computation to check that the definition, in particular the vanishing condition
on g1j for j ≥ 2, is independent of the choice of coordinates. In a coordinate chart as above we
can define a symmetric tensor h by means of the equation

g = g(β) + h.

We get a Hermitian matrix (hij), where hij = h(vi, vj). At the point p ∈ D we can rescale z1 and
perform a linear transformation in the z2, . . . , zn variables so that hij(p) = 0 for all 1 ≤ i, j ≤ n ;
but it is interesting to note that- contrary to the case for smooth metrics- this requirement doesn′t
fix the coordinates up to first order. Let {ṽ1, . . . , ṽn} be some other frame field of vectors in the
complement of D such that, with respect to g(β), the length of the vectors ṽ1, . . . , ṽn is constant

and the vectors are pairwise orthogonal. For example we can take ṽ1 = eiθv1 with θ = arg(z1) and
ṽj = vj for j ≥ 2. We can define functions g̃ij = g(ṽi, ṽj). The vanishing condition g1j = 0 for
j ≥ 2 implies that the functions g̃ij extend Hölder continuously to D and hence the definition is
independent of the frame field of vectors chosen.

• There are two types of coordinates we can take around D. The first one is given by holomorphic
coordinates z1, . . . , zn such that D = {z1 = 0}. In the second one we replace the coordinate z1 with
ρeiθ, by means of 1.2, and leave z2, . . . , zn unchanged. We refer to the later as cone coordinates. In
other words, there are two relevant differential structures on X in our situation. One is given by the
complex manifold structure we started with, the other is given by declaring the cone coordinates
to be smooth. The two structures are equivalent by a map modeled on 1.2 in a neighborhood of D.
The notion of a function being Hölder continuous (without specifying the exponent) is independent
of the coordinates we take. Let f be a function on X and α ∈ (0, 1), we say that f ∈ Cα if it
belongs to this space, in the usual sense, in the cone coordinates. We can incorporate the exponent
α in Definition 1 by requiring the functions gij to be Cα. It is interesting to note that the notion
we get is independent of the complex coordinates z1, . . . , zn only if we add the restriction that
α ≤ β−1 − 1. Indeed let g be a metric in a domain of C2, with standard complex coordinates
(z̃1, z̃2), of cone angle 2πβ along D = {z̃1 = 0}. Write g̃ij , 1 ≤ i, j ≤ 2, for the coefficients of g
as we defined previously; so that g̃ij are smooth functions on the complement of D which extend
Hölder continuously to D . Set z̃1 = z1 and z̃2 = z1 + z2, so that

∂

∂z1
=

∂

∂z̃1
+

∂

∂z̃2
,

∂

∂z2
=

∂

∂z̃2
.

In the coordinates (z1, z2) we get that

g11 = g̃11 + |z1|1−β(g̃12 + g̃21) + |z1|2−2β g̃22, g12 = g̃12 + |z1|1−β g̃22, g22 = g̃22.

The function |z1|1−β belongs to Cα only if α ≤ β−1 − 1.

Next we provide examples of metrics which satisfy Definition 1. We begin with a local description
of a general type of metric with cone singularities. Let F be a smooth positive function and let η be a
smooth Kähler form, both defined on a domain in Cn which contains the origin. Consider the (1, 1) form

ω = η + i∂∂(F |z1|2β). (1.6)

Straightforward calculation gives us that

i∂∂(F |z1|2β) = |z1|2βi∂∂F + β|z1|2β−2
(
z1idz1 ∧ ∂F + z1i∂F ∧ dz1

)
+ β2|z1|2β−2Fidz1 ∧ dz1.

Let I be the complex structure of Cn and g = ω(., I.). Let v1, . . . , vn be as in 1.5. We want to compute
gij = g(vi, vj). We write η =

∑n
i,j=1 ηijidzi ∧ dzj . Note that the coefficients ηij are given by the
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contraction of η with the standard coordinate vectors ∂/∂zi, ∂/∂zj , while to obtain gij we must contract
g with vi, vj . It is easy to check that

g11 = |z1|2−2βη11 + |z1|2
∂2F

∂z1∂z1
+ β

(
z1
∂F

∂z1
+ z1

∂F

∂z1

)
+ β2F ;

g1j = |z1|1−βη1j + |z1|1+β
∂2F

∂z1∂zj
+ β|z1|β−1

(
z1
∂F

∂zj
+ z1

∂F

∂zj

)
forj ≥ 2;

gjk = ηjk + |z1|2β
∂2F

∂zj∂zk
forj, k ≥ 2.

It is then clear that, in a neighborhood of 0, g defines a Kähler metric with cone angle 2πβ along
D = {z1 = 0}. Indeed this metric is Cα for α = β−1− 1. There is a useful way of thinking of the metric
g: On Cn+1 with standard complex coordinates (z1, . . . , zn+1) consider the (1, 1) form

Γ = η + i∂∂(F |zn+1|2).

This form defines a smooth Kähler metric on Cn+1 in a neighborhood of 0. Let us delete a ray in the
complex plane corresponding to the z1 variable and define

Φ(z1, . . . , zn) = (z1, . . . , zn, z
β
1 ),

so that ω = Φ∗Γ. The pullback of Γ by Φ is independent of the branch of zβ1 that we take and we can think
of the metric g in the complement of D as the restriction of the smooth metric defined by Γ to a smooth
complex hypersurface in Cn+1. A well-known principle says that the holomorphic sectional curvature
of a complex submanifold of a Kähler manifold is less or equal than that of the ambient manifold, see
Section 0.5 in Griffiths-Harris [18]. We conclude that we can restrict g to a smaller neighborhood of 0 if
necessary so that its sectional curvature is uniformly bounded from above.

Remark 1 It is easy to see from the expressions of the coefficients gij that in order that ω defines a
Kähler metric with cone singularities in a neighborhood of 0, it is enough that η is a closed (1, 1) form
such that (ηjk)2≤j,k≤n is a positive matrix at 0. In this more general situation we can not conclude the
upper bound on the sectional curvature of g. A good example to have in mind is the following: Let a be a
real number with |a| < 1. Consider the metric defined in the unit disc of the complex numbers given by

ga = (a+ |z1|2β−2)|dz1|2.

The Gaussian curvature of this metric is equal to

Ka = −4(β − 1)2a
|z1|2−4β

(1 + |z1|2−2βa)3
.

If 1/2 < β < 1, then Ka is unbounded below when a > 0 and unbounded above if a < 0. Of course we
can take the product of ga with a flat euclidean factor Cn−1 to fit this example into our discussion.

The following lemma compiles our results into a global form.

Lemma 1 Let (X, η) be a smooth compact Kähler manifold and D ⊂ X a smooth divisor. Let h be a
smooth Hermitian metric on the line bundle [D]. Let s ∈ H0([D]) be such that D = {s = 0}. For ε > 0

set ω = η + εi∂∂|s|2βh . If we take ε small enough then the form ω defines a Kähler metric with cone
singularities as in Definition 1. The metric ω is, up to quasi-isometry, independent of the choices of η,
ε, s and h. The bisectional curvature of ω is uniformly bounded from above.

Proof: Indeed we have shown that η + i∂∂|s|2βh is a Kähler metric in a sufficiently small tubular neigh-

borhood U of D with cone angle 2πβ along D. We take ε > 0 small enough so that η > −εi∂∂|s|2βh in
the complement of U and we check that ω has the desired properties. �

The statement about the bisectional curvature in Lemma 1 is a little bit technical at this point, but
it will be relevant in the next subsection. We don’t need to recall the definition of bisectional curvature
right now. We just say that on a Kähler manifold a uniform (upper) bound in any of the following three
quantities: holomorphic sectional curvature, sectional curvature, bisectional curvature; implies a uniform
(upper) bound in the other two quantities. In this direction we mention the following
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Conjecture 1 If there is a ‘polyhomogeneous’ Kähler metric with cone angle 2πβ along D, bounded
sectional curvature and 1/2 < β < 1, then there is a holomorphic splitting

TX|D = TD ⊕ νD;

where νD = TX/TD is the normal bundle.

In Subsection 6.2 we touch on ideas related to this conjecture. We haven’t defined the notion of poly-
homogeneity. We simply mention that the reference metric ω in Lemma 1 is polyhomogeneus as well
as any metric with cone singularities as in Definition 1 which is Einstein in the complement of D (see
Jeffres-Mazzeo-Rubinstein [20]).

We change gears and discuss the foundations of the linear theory for metrics with cone singularities.
We introduce the space of C2,α functions. First we work on Cn with standard complex coordinates
(z1, . . . , zn) endowed with the model metric g(β). In the complement of D = {z1 = 0} there is (up to a

factor of
√

2) an orthonormal basis of the (1, 0) forms given by ε1 = β|z1|β−1dz1, ε2 = dz2, . . . , εn = dzn.
Let η be a (1, 0) form and write η =

∑n
j=1 ηjεj . We say that η is Cα if the components ηj are Cα for

j = 1, . . . , n and η1 = 0 when z1 = 0. If η is a (1, 1) form we write η =
∑
i,j ηijεi ∧ εj . We say that η

is Cα if the components ηij are Cα for i, j = 1, . . . , n and η1j = ηj1 = 0 when z1 = 0 and j ≥ 2. These
definitions can be compared with Definition 1 and similar remarks apply. A (real) function f is said to
be C2,α if f, ∂f, ∂∂f are Cα. Let us point out that -in contrast with the standard β = 1 case- we are
not requiring all the second derivatives to be Cα. The function spaces Cα and C2,α clearly depend on
the parameter β, in the literature it is usual to find the notation Cα,β for the space Cα and C2,α,β for
C2,α. In the setting of a compact complex manifold X, a smooth divisor D ⊂ X and a fixed parameter
0 < β < 1 it is straightforward, by using a finite collection of charts in which D = {z1 = 0}, to define
the function spaces Cα, C2,α and to endow them with norms so that they become Banach spaces. Let
ω be a Cα Kähler metric with cone angle 2πβ along D and write 4ω for the Laplace operator of the
metric. The following result is of fundamental importance:

Theorem 1 Assume that α < β−1 − 1. Then 4ω : C2,α → Cα is a Fredholm operator with zero index.

In order to illustrate some of the applications of Theorem 1 we consider the functional F : U → Cα,
where U is a neighborhood of 0 in C2,α and F(u) = log (ωnu/ω

n), with ωu = ω + i∂∂u. The derivative
at 0 of F is given, up to a constant multiple, by 4ω. We can use Theorem 1 together with the implicit
function theorem, to conclude that for any function f which is sufficiently small in Cα and such that∫
X
efωn =

∫
X
ωn there exists u ∈ C2,α such that ωnu = efωn. Theorem 1 is proved in [15]. First one

works with the model metric g(β) in Cn. Let p /∈ D = {z1 = 0}. Denote by Γp the Green’s function for
the Laplacian 4 of g(β) with a single pole at p. One uses separation of variables, together with a check
of convergence, to write a series expansion in a neighborhood of 0

Γp =
∑
j,k≥0

aj,k(y)ρ2j+k/β cos(kθ),

where y = (z2, . . . , zn), z1 = ρ1/βeiθ and aj,k are smooth functions. The expression for the coefficients
aj,k is explicit in terms of Bessel functions. One then writes G(x, y) = Γx(y) and differentiates twice (with
some care) the integral representation u(x) =

∫
G(x, y)4u(y)dy to obtain interior Schauder estimates for

4. In the setting of Theorem 1 one can patch these local estimates together and use standard arguments
to obtain a parametrix for the operator 4ω. We will discuss related topics and the content of [15] with
more detail in Section 4.

1.2 Kähler-Einstein metrics with cone singularities

Let X be a compact complex manifold, D ⊂ X a smooth divisor and 0 < β < 1. We are interested in
Kähler-Einstein (KE) metrics with cone angle 2πβ along D. These are metrics with cone singularities,
as in Definition 1, such that the Ricci tensor is a constant multiple of the metric in the complement of
D. Among the precedents which motivate this topic we mention the following ones:

• Riemann surfaces with conical singularities and constant Gaussian curvature. This is a classical
topic (see [33], [29]). It has strong connections with the study of polyhedral shapes in three dimen-
sional space forms ([32], [27]). The study of constant Gaussian curvature metrics on the Riemann
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sphere with three cone singularities is essentially equivalent to the study of the hypergeometric
equation ([16]).

• Three dimensional hyperbolic metrics with cone singularities along a knot. See [19].

• Anti-self-dual-connections on four-manifolds with cone singularities along an embedded surface,
[24]. Holomorphic vector bundles with parabolic structures, [5].

In the context of Kähler geometry we can say that, if we fix the parameter 0 < β < 1, it is expected
to find relations between algebraic compactifications of moduli spaces of pairs (X,D) and the metric
degenerations of the corresponding KE metrics with cone angle 2πβ. Understanding the differential
geometry of the limits should give us information on the possible singular pairs (W,∆) which arise in
the algebraic compactification. As a prototypical of example we consider the space M of four distinct
unordered points in CP1 modulo the action of Möbius transformations. It is well-known that M has
the structure of a Riemann surface and that M ∼= C. The Riemann sphere is the only algebraic
compactification of M and it is obtained by adding a single point to the space. On the other hand
we can fix 1/2 < β < 1 and consider the space P of spherical metrics on CP1 with cone singularities
of angle 2πβ at four distinct points modulo isometry. It is well-known that to each point of M there
corresponds a unique point in P, and that this map is an homeomorphism if we endow P with the
Gromov-Hausdorff distance. If P is an algebraic compactification of M, then it would follow that there
is only one possible limit for any sequence of metrics in P which degenerates. A little of thought shows
that this limit should correspond to a spherical metric with two cone singularities (‘american football’)
of angle 2πγ with γ = 2β − 1. Algebraically this corresponds to two distinct points in CP1 counted
with multiplicity two. If we fix β = 1/2 (or 0 < β < 1/2) then the discussion involves limits of flat (or
hyperbolic) metrics with cone singularities.

Now we state a general existence result for KE metrics with cone singularities, similar to the the
well-known Calabi conjecture for smooth metrics. Note that a Kähler form with cone singularities is
Hölder continuous in cone coordinates and it is straightforward to see that it represents a de Rham
cohomology class. The next theorem summarizes work of [6], [20] and [26] among others.

Theorem 2 Let X be a compact complex manifold, D ⊂ X be a smooth divisor and β ∈ (0, 1). Assume
that

• c1(X)− (1− β)c1([D]) < 0. Then there exists a unique Kähler metric ωKE on X with cone angle
2πβ along D such that Ric(ωKE) = −ωKE in the complement of D.

• c1(X) − (1 − β)c1([D]) = 0. Then in any Kähler class on X there exists a unique Kähler metric
ωKE with cone angle 2πβ along D such that Ric(ωKE) = 0 in the complement of D.

• There exists a Kähler-Einstein metric on X with positive scalar curvature, D ∈ |λK−1X | with λ ≥ 1
a rational number and β > 1 − λ−1; so that c1(X) − (1 − β)c1([D]) > 0 . Then there exists a
unique Kähler metric ωKE on X with cone angle 2πβ along D such that Ric(ωKE) = ωKE in the
complement of D.

Theorem 2 requires c1(X) to be ‘more positive than usual’. For example, in the second bullet we
require c1(X) = (1 − β)c1([D]) rather than c1(X) = 0 for the existence of a Ricci-flat metric. This
can be justified heuristically by thinking of KE metrics with cone singularities as having a big lump of
positive Ricci curvature concentrated along D. A consequence of Theorem 2 is that every projective
manifold has a KE metric with cone singularities of negative scalar curvature. Indeed take any β ∈ (0, 1)
and let H be an ample class in X. If we take m = m(β) sufficiently large we can guarantee that
c1(X) − (1 − β)c1(mH) < 0 and, by Bertini’s theorem, that there is a smooth divisor D ∈ |mH|. The
hypothesis of the first bullet in Theorem 2 are then satisfied. Let us give a sketch of the proof of this
first bullet, the main reason being that the techniques we use are relevant to our future work.
Proof: The hypothesis that c1(X) − (1 − β)c1([D]) < 0 implies that there is a smooth Kähler form η
such that −(2π)−1[η] = c1(X) − (1 − β)c1([D]). Take s to be a holomorphic section of [D] such that
s−1(0) = D and let h be a smooth Hermitian metric on [D]. Fix ε > 0 so that we have the reference

metric ω = η + εi∂∂|s|2βh , as in Lemma 1. We claim that there is a Cα function f on X, smooth in
the complement of D, such that Ric(ω) = −ω + i∂∂f . Indeed, the cohomology condition on η implies
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that there is a smooth function F on X with i∂∂F = η + Ric(η) + (1 − β)i∂∂ log |s|2h. We use that
Ric(ω)− Ric(η) = i∂∂ log (ηn/ωn) to obtain

Ric(ω) = Ric(η) + i∂∂ log

(
ηn

ωn

)
= i∂∂F − η − i∂∂ log

(
|s|2−2βh ωn

ηn

)
= −ω + i∂∂f ;

where

f = F + ε|s|2βh − log

(
|s|2−2βh ωn

ηn

)
.

It is easy to check that f is a smooth function in the complement of D which extends as a Cα function
to X, as we claimed.

We want to find u ∈ C2,α a solution of

(ω + i∂∂u)n = ef+uωn. (1.7)

It is easy to argue that if we set ωKE = ω + i∂∂u, then ωKE defines a Kähler metric with cone angle
2πβ along D and Ric(ωKE) = −ωKE in the complement of D. In order to solve equation 1.7 we use the
Aubin-Yau continuity method. A novel feature is that the path we use doesn′t start with the reference
metric ω, as we shall explain.

Consider the functional F : U → Cα, where U is a neighborhood of 0 in C2,α and F(ũ) =
log(ωnũ/ω

n)− ũ, with ωũ = ω + i∂∂ũ. It is clear that F(0) = 0 and that the derivative at 0 is given by
D0F(ũ) = 4ωũ− ũ, with 4ω the (negative definite or ‘analyst’) Laplacian. Integration by parts shows
that D0F has no kernel, so that the implicit function theorem together with Theorem 1 implies that
there is ε > 0 such that for every h ∈ Cα with ‖h‖α < ε there is ũ ∈ C2,α such that F(ũ) = h. Recall
that in a compact manifold for any Cα̃ function f and α < α̃ there is a sequence of smooth functions
which converges to f in the Cα norm. It is then easy to argue that there is a smooth function f0 (in the
complex coordinates) such that ‖f − f0‖α < ε. We call h = f − f0 and take ũ ∈ C2,α with F(ũ) = h, so
that ω0 = ω+i∂∂ũ satisfies ωn0 = eh+ũωn. The improvement is that now we have Ric(ω0) = −ω0+i∂∂f0,
with f0 a smooth function.

In order to solve equation 1.7 it is enough to find u1 ∈ C2,α such that (ω0 + i∂∂u1)n = ef0+u1ωn0 ;
because then u = ũ+ u1 is the solution that we want. We use the Aubin-Yau continuity path

(ω0 + i∂∂ut)
n = etf0+utωn0 (1.8)

and consider the set

T = {t ∈ [0, 1] such that there exists ut ∈ C2,α a solution of 1.8}.

If we denote ωt = ω0 + i∂∂ut, then Ric(ωt) = −ωt + (1− t)i∂∂f0. We start the continuity path at t = 0
with u0 = 0. The goal is to show that T is open and closed.

Theorem 1 implies that T is open. The fact that T is closed follows from the following a priori
estimate: There is a constant C, independent of t ∈ T , such that ‖ut‖2,α ≤ C. The proof of this
estimate is divided into three steps:

• C0 estimate. This is an application of the maximum principle. If ut attains its maximum at
p ∈ X \ D then 1.8 implies that tf0(p) + ut(p) ≤ 0 , so that suput ≤ max{− inf f0, 0}. If the
maximum is attained at p ∈ D then one considers ũt = ut + δ|s|εh for a suitable choice of δ and
ε positive and small. The function ũt attains its maximum outside D, one gets a uniform upper
bound on the supremal of ũt which indeed implies a uniform upper bound on suput. Similarly one
gets a uniform lower bound on inf ut. As a result ‖ut‖0 ≤ C.

• C2 estimate. The technique is the maximum principle again. Since the reference metric ω has
bisectional curvature bounded by above, there is a constant C3 such that Bisec(ω) ≤ C3. In the
complement of D, equation 1.8 gives us Ric(ωt) = −ωt + (1− t)i∂∂f0. Since f0 is smooth there is
a constant C2 > 0 such that i∂∂f0 ≥ −C2ω. Set C1 = 1 so that Ric(ωt) ≥ −C1ωt − C2ω. Write
ωt = ω + i∂∂ũt and A = C2 + 2C3 + 1. The Chern-Lu inequality tells us that

4ωt(trωtω −Aũt) ≥ −C1 −An+ trωtω. (1.9)
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Note that ũt = ũ+ ut, so the previous bullet gives us a uniform bound on ‖ũt‖0. We use 1.9 and
the maximum principle (as in the previous item) to get the uniform bound trωtω ≤ C. This bound
together with the equation 1.8 imply that C−1ω ≤ ωt ≤ Cω.

• C2,α estimate. This is a local result. We want to appeal to the ‘interior Schauder estimates for the
complex Monge-Ampere operator’. In the case that β = 1 (no cone singularities) there is a large
literature on this topic; we mention, among others, the work of Caffarelli and Safanov for the real
Monge-Ampere operator. More recently, Chen-Wang ([10]) gave a new proof of these estimates by
means of a ‘blow-up’ argument, similar in spirit to Leon Simon’s proof of the Schauder estimates for
the Laplace operator. This technique works in the setting of metrics with cone singularities. Our
previous C2 estimate together with Theorem 1.7 in [10] gives us that ‖u‖2,α ≤ C. Alternatively
we can refer to Evans-Krillov theory and its analogue for metrics with cone singularities, see [20].

�

Another important result concerning KE metrics with cone singularities is the regularity theory for
such a class of metrics. More precisely, the result we want to refer to says that these metrics are
‘polyhomogeneous’. The basic reference for this is [20]. We proceed to the statement of the theorem.
Let p ∈ D and (z1, . . . , zn) holomorphic coordinates centered at p in which D = {z1 = 0}. We write
z1 = ρ1/βeiθ and denote by y = (z2, . . . , zn) the other coordinate functions.

Theorem 3 Let ωKE be a Kähler-Einstein metric on X with cone angle 2πβ along D and β ∈ (1/2, 1).
Then for every p ∈ D we can find holomorphic coordinates (z1, . . . , zn) as above such that ωKE = i∂∂φ,
with

φ = a0(y) + (a01(y) cos(θ) + a10(y) sin(θ))ρ1/β + a2(y)ρ2 +O(ρ2+ε). (1.10)

Where a0, a01, a10, a2 are smooth functions of y and ε = ε(β) > 0.

When β ∈ (0, 1/2] the same statement holds if we replace 1/β with 2 in the expansion 1.10. The proof
of Theorem 3 uses tools from the ‘Edge Calculus’.

As shown in the paper of Song-Wang [30], Theorem 3 implies that the norm of the Riemann curvature
tensor of a KE metric with cone angle 2πβ is bounded by ρ1/β−2. The energy of such a metric g is defined
to be

E(g) =
1

8π2

∫
X

|Rm(g)|2 =
1

8π2
lim
ε→0

∫
X\Uε

|Rm(g)|2,

where Uε is a tubular neighborhood of D of radius ε, Rm(g) denotes the Riemann curvature tensor of g
and we integrate using the volume form defined by g. It follows that E(g) is finite by comparison with

the integral
∫ 1

0
ρ2/β−3dρ < ∞. There is a topological formula for the energy which can be compared

with the Chern-Weil formulae in [24] for connections with cone singularities.

Theorem 4 [30]. The energy of a Kähler-Einstein metric of cone angle 2πβ along D is finite and can
be expressed in terms of c1(X), c2(X), β, c1([D]) and the cohomology class of the Kähler form.

Next we state a compactness theorem. Let X be a smooth Fano manifold, Di ⊂ X smooth divisors
with Di ∈ |λK−1X | for some fixed rational number λ ≥ 1 . Fix 1 − λ−1 < β < 1. Assume that there
exist KE metrics gi on X with cone angle 2πβ along Di, we normalize so that Ric(gi) = µgi, with
µ = 1 − (1 − β)λ. It is well-known that under these conditions there exists, taking a subsequence if
necessary, a Gromov-Hausdorff limit W of the sequence gi. Indeed, one can approximate the metrics gi
by smooth metrics with a uniform lower bound on the Ricci curvature and a uniform upper bound on
the diameter; then one can appeal to the standard Gromov’s compactness theorem (see [7]). The set W
is initially a metric space (W,d). A major theorem asserts that W is indeed homeomorphic to a normal
projective variety. The normalization condition on the metrics gi allow us to think of their respective
Kähler forms as the curvatures of correponding (singular) Hermitian metrics on K−1X . A consequence is

that for any pair of natural numbers i,m there is a map Ti : X → CPN with N = N(m), defined up to
the action of U(N + 1), given by an orthonormal (w.r.t. gi) basis of H0(−mKX). -More precisely, the
maps Ti are defined using the smooth metrics which approximate the sequence gi-. Kodaira’s Theorem
tells us that for m large enough the Ti are indeed well-defined maps in the whole of X and indeed these
are embeddings. The theorem we want to quote reads as follows:
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Theorem 5 [8] There is a Q-Fano variety W and a Weil divisor ∆ ⊂W such that:

• The pair (W, (1− β)∆) is KLT

• There is a weak conical KE metric for the triple (W,∆, β) which induces the distance d on the
Gromov-Hausdorff limit (W,d).

• There is m ∈ N with the property that, up to a subsequence, we have embeddings Ti : X → CPN
and T : W → CPN such that Ti(X) converges to T (W ) as algebraic varieties and Ti(Di)→ T (∆)
as algebraic cycles.

We refer to [8] for the definitions of the terms in the statement of the theorem. The proof of this
compactness result uses ideas from convergence theory of Riemannian manifolds and the Hörmander
technique in complex analysis. Theorem 4 is not used in the proof of Theorem 5. On the other hand one
might expect that -as in the case of smooth metrics- the bound on the energy should give us, at least
in the case of two complex dimensions, more information on the differential-geometric structure of the
limits (W,∆).

Finally we mention the celebrated work of Chen-Donaldson-Sun which establishes the existence of
Kähler-Einstein metrics with positive scalar curvature on K-stable Fano manifolds ([7], [8], [9]). KE
metrics with cone singularities play a key role in this work. It would take us a long digression to explain
the meaning of K-stability, so we will limit ourselves to say that this is an algebraic concept (i.e. that
it makes sense for varieties defined over some other fields rather than C), whose definition is motivated
with ideas coming from Geometric Invariant Theory. The strategy to prove the existence of a KE metric
on a K-stable Fano manifold is a variant of the continuity method, which resembles the ‘opening of an
umbrella’. First one fixes a natural number λ ≥ 2 and a smooth divisor D ∈ |−λKX |. They consider KE
metrics in the cohomology class 2πc1(X) with cone singularities along D of cone angle 2πβ along D and
then they let β → 1. It is a consequence of Theorem 1 and the fact that there are no holomorphic vector
fields on X tangent to D that the set of β for which there is a KE metric with cone angle 2πβ along D is
open. As a starting point in the continuity path one can take β0 = 1− λ−1, so that there is a Ricci-flat
metric ωβ0

in 2πc1(X) with cone angle 2πβ0 along D. The hard work is to derive two compactness
theorems on sequences (Xi, Di, ωβi) of KE metrics with cone angle 2πβi along Di. (In practice, for the
application we are describing, the pair (Xi, Di) is independent of i). The first compactness theorem
concerns the case that limi→∞ βi < 1; the second one regards the case when limi→∞ βi = 1. These
compactness theorems are formulated in such a way that one can conclude that either there is a smooth
KE metric on X or there is an algebraic variety W with a divisor ∆ ⊂W which one can use to contradict
the definition of K-stability of X. In the simplest case when X = CP1 and λ = 2 we start with the flat
metric of a regular tetrahedron and deform through spherical metrics with cone singularities to finally
get the round metric. It is interesting to see what happens when X does not admit a smooth KE metric.
For example we consider the case when X is the blowup of CP2 at q1 = [1, 0, 0] and q2 = [0, 1, 0]. Let
D ⊂ X be the proper transform of a smooth cubic C ⊂ CP2 which passes through the points q1, q2 and
meets the line at infinity at a third distinct point q3. We would have to digress into a discussion on
toric geometry and Futaki invariants to justify the following speculations, so we will simply state them.
Consider the one parameter subgroup of biholomorphisms mλ of X induced by the action on CP2 given
by [u, v, w] → [λu, λv, w]. Let ∆ = limλ→0mλ(D) ⊂ X . Then ∆ ⊂ X is a singular curve which is
the proper transform of three lines in CP2 meeting at p̃ = [0, 0, 1] -the lines p̃q1, p̃q2 and a third one-.
There is a critical angle β0 = 21/25. For any β ∈ (0, β0) there should be a KE metric gβ on X in the
class 2πc1(X) with cone angle 2πβ along D and Ric(gβ) = βgβ . There should be a KE metric gβ0

on
X with cone angle 2πβ0 along ∆ in a suitable sense, so that gβ → gβ0

as β → β0. Let p be the point
in X which projects to p̃, so that ∆ is singular at p. Consider the re-scaled metrics (X,Rβgβ , p), with
Rβ = |Rm(gβ)|(p). We expect that Rβ → ∞ as β → β0 and that the rescaled metrics converge to a
Ricci-flat metric on C2 with cone angle 2πβ0 along a smooth cubic with three different asymptotic lines.
The main result of this thesis proves the existence of these model Ricci-flat metrics on C2.

1.3 Asymptotically conical Ricci-flat Kähler metrics

We give a brief review of material on asymptotically conical Ricci-flat Kähler metrics. This subsection
is merely expository and has the purpose of providing context. There is a large literature on the topic
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we want to discuss. The sequence of articles of Conlon-Hein [12], [13] and [14], gives a good panorama
of what is known in this area to date and provides adequate references.

Let (L, g) be a compact Riemannian manifold. On (0,∞)× L consider the metric

gc = dr2 + r2g,

where r is the coordinate on (0,∞). We say that gc is a Riemannian cone with link (L, g). The function r
is then characterized as the intrinsic distance to the apex of the cone in the metric completion. Let µ be
a negative number. A Riemannian manifold (M, g) is called asymptotically conical (‘AC’), asymptotic
to gc at rate µ, if the following condition holds: There exists a diffeomorphism Φ : (R,∞)×L→M \K,
for some R > 0 and K ⊂ M is compact, such that |∇j (Φ∗g − gc) |gc = O(rµ−j) for all j ≥ 0. We have
denoted by ∇ the Levi-Civita connection of gc. When gc is a quotient of the euclidean flat space by a
finite subgroup of the orthogonal matrices which acts freely on the unit sphere, the corresponding AC
metrics are called ‘asymptotically locally euclidean’ or ALE.

In the case that gc admits a parallel complex structure Ic, i.e. that it is Kähler, the pair (L, g) inherits
ths structure of a so-called a Sasaki manifold. We have a Kähler form ωc = gc(Ic., .) and it is not hard to
check that ωc = (i/2)∂∂r2. We use the embedding of L into the cone -given by setting r = 1- to think of
Ic

∂
∂r as a vector field on L, known as the Reeb vector field. There are two types of Sasaki manifolds. If

the Reeb vector field generates an S1 action then (L, g) is said to be quasiregular; otherwise it is called
irregular. The term regular is used for the quasiregular ones in which the S1 action is free. Of particular
interest is the case when gc is Ricci-flat. Moreover, we assume that we have a holomorphic volume form
Ωc and that ωnc = cnΩc ∧ Ωc, where n is the complex dimension, cn = 1 if n is even and cn = i if n is
odd. It is not hard to prove that this can only happen if (L, g) is an Einstein manifold with positive
scalar curvature. In the case of a regular Ricci-flat Kähler cone, the Kähler quotient of gc by the free S1

action at r = 1, is a Kähler-Einstein metric of positive scalar curvature. The inverse proccess is known
as the ‘Calabi ansatz’; it produces a Kähler Ricci-flat cone metric in complex dimension n out of a KE
metric with positive scalar curvature in complex dimension n− 1.

Consider now the case of a Kähler manifold (M, g, ω, I) of complex dimension n with a non-vanishing
holomorphic volume form Ω. Let gc be a Ricci-flat Kähler cone metric as in the previous paragraph.
Let µ be a negative number. We say that (M, g) is an asymptotically conical Ricci-flat Kähler metric,
asymptotic to gc at rate µ, if the following two conditions hold:

• ωn = cnΩ ∧ Ω.

• There is a diffeomorphism Φ : (R,∞) × L → M \K, for some R > 0 and K ⊂ M compact, such
that |∇j (Φ∗g − gc) |gc = O(rµ−j), |∇j (Φ∗ω − ωc) |gc = O(rµ−j) and |∇j (Φ∗I − Ic) |gc = O(rµ−j)
for all j ≥ 0.

The prototype of an AC Ricci-flat Kähler metric is the Eguchi-Hanson metric on T ∗CP1, asymptotic
to C2/ ± 1 . The metric has cohomogeneity one, is explicit and admits different descriptions: via an
ODE, as a Kähler quotient of a linear representation or via the Gibbons-Hawking ansatz. The most
general existence result for AC Ricci-flat Kähler metrics, to the author’s knowledge, is Theorem 2.1 in
[12]. Roughly speaking it says that given a complex manifold (M, I) with a holomorphic volume form
Ω, a Ricci-flat Kähler cone metric gc as before and a diffeomorphism Φ : (R,∞)×L→M \K such that
|∇j (Φ∗Ω− Ωc) |gc = O(rν−j) for some ν < 0 and all j ≥ 0; then every Kähler class in H2

dR(M) which
satisfies a mild technical condition has an AC Ricci-flat Kähler metric. The proof of this result is PDE
based and goes along the lines of Joyce’s work on the Calabi conjecture for ALE manifolds, see Chapter
8 in [21].

A good reason for studying AC Ricci-flat Kähler metrics is that these can arise as bubbles when a non-
collapsed sequence of Kähler-Einstein metrics (Xi, ωi) develops an isolated singularity. For simplicity
let us assume that the underlying topological space is fixed and that Ric(ωi) = ωi, so that the non-
collapsed condition is automatically satisfied. It follows from Gromov’s compactness theorem that, up
to a subsequence, the sequence converges to a metric space (X, d). Under the hypothesis we are working
with, some deep results of Cheeger and Colding imply that there exists a metric tangent cone to X at
x∞ for any x∞ ∈ X. Suppose that the tangent cone at x∞ has a smooth link (L, g), so that we have
a Ricci-flat Kähler cone metric gc as the ones we have described before. Moreover, assume that x∞
is an isolated singularity in X, so that there exists a neighborhood of x∞ in which all points distinct
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from x∞ have the flat space Cn as a tangent cone. Then, at a heuristic level and true under some
additional technical hypothesis, there is a sequence of points xi ∈ Xi with xi → x∞ such that if we
let λi = |Rm(ωi)|(xi); then (Xi, λiωi, xi) → (M,ω, p), where (M,ω) is an AC Ricci-flat Kähler metric,
asymptotic to the tangent cone of X at x∞. We refer to Theorem 5.1 in Bando-Kasue-Nakajima [3] for
a precise result along these lines in the situation in which ALE spaces arise as bubbles. A good example
that fits in this context is provided by Ricci-flat metrics on a Kummer K3 surface which degenerate to
the flat orbifold T 4/ ± 1. The Eguchi-Hanson metric arises as the blow up limit of the metrics at the
singular points. We discuss convergence theory with more detail in the case of two complex dimensions
and related results of Anderson [1] in Section 6. The Bishop-Gromov volume monotonicity theorem
underpins many aspects of the theory.

There should be a parallel to the theory of AC Ricci-flat Kähler metrics in the setting of metrics with
cone singularities. Our main result is an existence theorem which provides interesting examples. We
restrict to two complex dimensions. This restriction is irrelevant in our analytic work but it simplifies
the constructions in Sections 2 and 3.

1.4 Content of the thesis

We work on C2 with standard complex coordinates z, w. Let P = P (z, w) be a degree d (≥ 2) polynomial
such that C = {P = 0} is a smooth complex curve. We restrict to the case in which C has d different
asymptotic lines. Write

P = Pd +Q,

where Pd is the homogeneous degree d part of P . Our restriction means that the zero locus of Pd consists
of d distinct complex lines L1, . . . , Ld. See Figure 2.

Figure 2: For example we can consider the curve C = {zw(z − w) = 1}. As a topological space C is a
torus with three points removed.

We fix a number β such that

d− 2

d
< β < 1. (1.11)
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By results of Troyanov [33] and Luo-Tian [27], under condition 1.11 there is a (unique up to scale)
compatible metric g on CP1 with constant positive Gaussian curvature and cone angle 2πβ at the points
corresponding to the lines L1, . . . , Ld. Write L = ∪dk=1Lk. In Section 2 we construct a flat Kähler metric
gF on C2 \L. The starting point in the construction of the flat metric gF is the existence of the spherical
metric g. The link between these two metrics is given by means of the Hopf bundle. The metric gF is
singular along L. More precisely, around each point 0 6= p ∈ L we can find holomorphic coordinates
(z1, z2) centered at p in which gF agrees with the model metric g(β) = β2|z1|2β−2|dz1|2 + |dz2|2. The
property of gF that we shall exploit the most is the one of being a metric cone, with its apex at 0.

We denote by D the set of all diffeomorphisms H of C2 for which there exists a compact set K such
that H(C \K) ⊂ L and are asymptotic to the identity in the following sense: there are constants Aj such
that |H(x)− x| ≤ A0 , |DH(x)− Id| ≤ A1|x|−1 and |DαH(x)| ≤ Aj |x|−j for all x ∈ C2 and j = |α| ≥ 2.
It is elementary to prove that D is not empty, see Subsection 3.1.

Our main theorem states the existence of a Ricci-flat Kähler metric gRF on C2 \ C asymptotic to
gF . Write ωRF for the Kähler form associated to gRF . Let r be the intrinsic distance in gF to 0 and set
Ω = (

√
2)−1dz ∧ dw. Our main result is the following

THEOREM 1 There is a Kähler metric gRF on C2 with cone angle 2πβ along C and H ∈ D such that

•
ω2
RF = |P |2β−2Ω ∧ Ω (1.12)

•
|(H−1)∗gRF − gF |gF ≤ Arγ (1.13)

outside a compact set, for some constants A > 0 and γ < 0.

Equation 1.12 implies that gRF is Ricci-flat. Indeed, the Ricci form of gRF is given by−i∂∂ log det(gRF ).
This is zero since, up to a constant factor, det(gRF ) is equal to |P |2β−2 and P is holomorphic non-
vanishing in the complement of the curve. The asymptotic behavior 1.13 indeed holds in a stronger
Cα sense, as will be clear from the proof of the Theorem. In the case that d = 2 we can assume that
C = {zw = 1}. Then gRF is invariant under the S1 action eiθ(z, w) = (eiθz, e−iθw) and it agrees with
the metric described, by means of the Gibbons-Hawking ansatz, in Section 5 of [15]. When d = 3 and
β = 1/2 the metrics are quotients of Kronheimer’s D4 gravitational instantons by an involution. See
[22].

We briefly give some context for THEOREM 1, along the lines of Sections 5 and 6 of [15]. Consider
a compact complex surface X and a family of smooth curves Cε which converge as ε→ 0 to a curve C0

singular at p ∈ X. Assume the singularity is modeled on {Pd = 0}. Let β be fixed as in 1.11 and suppose
that we have Kähler metrics ωε with cone angle 2πβ along Cε and Ric(ωε) = ωε, say, on the complement
of the curves. We would expect that (under favorable conditions) after re-scaling ωε around small balls
centered at p we will get a metric gRF in the limit, of the kind given by our THEOREM 1. We say more
about this conjectural picture in Section 6.

We will now outline the strategy we follow to prove THEOREM 1. In a few words we can say that
our approach is PDE based and goes along the lines of Yau’s proof of the Calabi conjecture. The work of
Yau has been extended to the context of metrics with cone singularities by Brendle [6], Jeffres-Mazzeo-
Rubinstein [20] and to the context of ALE metrics by Joyce [21]. Our work is a mixture of [6], [20] and
[21].

In Section 3 we construct H ∈ D and a reference metric ω which has cone angle 2πβ along C and
is asymptotic to ωF . In Subsection 3.3 we construct another metric, ωB , which is quasi-isometric to ω.
We prove that ωB has bisectional curvature bounded from above. This follows the lines of Appendix A
in Jeffres-Mazzeo-Rubinstein [20]. Later on we will use this bound to get our C2 estimate. We finish
Section 3 by proving a Sobolev inequality for the reference metric ω.

Our analytic work begins in Section 4, where we develop the linear theory we need. First we review
some foundational material from [15]. We state the interior Schauder estimates (Theorem 7), which are
of fundamental importance in our analysis. Having the interior estimates at hand, in subsections 4.2 and
4.3 we set up a theory of ‘weighted Hölder spaces’. Our main references in doing this are Pacard [28] and
Bartnik [4], see also Chapter 8 in [31]. The main result of Section 4 is Proposition 5, which establishes
good mapping properties for the Laplacian acting in our weighted spaces. This parallels known results
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in the case of asymptotically conical smooth metrics as stated in Theorem 2.11 of Conlon-Hein [12].
In subsection 4.4, as an application of Proposition 5 and the implicit function theorem, we show the
existence of a metric ω0 asymptotic to ωF such that

ω2
0 = e−f0 |P |2β−2Ω ∧ Ω, (1.14)

with f0 a smooth function of compact support. What will be important for us, apart from the fast decay
of f0, is that 1.14 implies that ω0 has bounded Ricci curvature. The bound Ric(ω0) ≥ −Bω0 for some
B > 0 is what we will use to derive the C2 estimate.

To prove the theorem it is enough to show that there exists u ∈ C2,α
δ (our notation for the weighted

Hölder spaces) such that

(ω0 + i∂∂u)2 = ef0ω2
0 .

We set ωRF = ω0 + i∂∂u to be our solution. Standard elliptic regularity theory implies that u is smooth
on the complement of the curve. The positivity of ωRF follows from the equation, the decay of ∂∂u and
the conectedness of C2 \ C. In order to solve the equation we use the continuity method and consider
the set

T = {t ∈ [0, 1] : ∃ ut ∈ C2,α
δ solving (ω0 + i∂∂ut)

2 = etf0ω2
0}. (1.15)

We want to prove that 1 ∈ T . Proposition 5 implies that T is open and 0 ∈ T trivially (u0 = 0). The
closedness of T follows from the a priori estimate ‖ut‖2,α,δ ≤ C for some constant C > 0 independent
of t ∈ T . This is the content of Proposition 7. We prove this proposition into several steps. First we
estimate the C0 norm of u, to do this we use the Sobolev inequality (for the metric ω0) and then we run
a Moser iteration following Chapter 8 of Joyce [21]. To estimate the C2 norm of u we use the maximum
principle and the Chern-Lu inequality (in a slightly different way than in [20]). Here it is crucial that
we have an upper bound on the bisectional curvature of ωB and a lower bound on the Ricci curvature of
ωt = ω0 + i∂∂ut in the form of Ric(ωt) ≥ −AωB , for some A > 0. This bound holds for ω0 by 1.14 and
it holds for ωt since along the continuity path 1.15

Ric(ωt) = (1− t)Ric(ω0). (1.16)

The C2 estimate gives us the unform bound C−1ω ≤ ωt ≤ Cω. Then we can apply the interior C2,α

estimate given by Theorem 1.7 of Chen-Wang [10] . Finally we proceed to the weighted estimates. We
start by proving a bound on ‖ut‖0,µ for some δ < µ < 0. The technique is again Moser iteration and we
follow [21]. Finally the bound on ‖ut‖2,α,δ follows from the linear theory developed.

2 Flat metrics

We continue with the notation from the Introduction. Let Lk = {lk = 0} with lk linear functions of z, w
for k = 1, . . . , d. We set L = ∪dk=1Lk = {Pd = l1 . . . ld = 0}, where Pd is the homogeneous degree d part
of P . Recall that Ω = (

√
2)−1dz ∧ dw. The main result of this section is the following

Proposition 1 There exists a Kähler metric gF on C2 \ L with Kähler form ωF such that

ω2
F = |Pd|2β−2Ω ∧ Ω. (2.1)

The metric is a cone with apex at 0, is invariant under the S1 action eit(z, w) = (eitz, eitw) and

ωF =
i

2
∂∂r2, (2.2)

where r = r(z, w) is the intrinsic distance to 0.

As we said this result is a consequence of the fact that under the condition 1.11 there is a compatible
metric g on CP1 with constant positive Gaussian curvature and cone angle 2πβ at the points correspond-
ing to the lines L. It will turn out at the end that g is a Kähler quotient of gF by the S1 action. Note
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that (d − 2)/d < β is a necessary condition for the existence of such a metric g. In fact, Gauss-Bonnet
tells us that

2 + dβ − d =
1

2π

∫
CP1

KgdVg. (2.3)

Finally we state some other properties of the metrics given by Proposition 1 that follow from the
proof of it

• For every p /∈ L we can find holomorphic coordinates (z1, z2) around p such that the metric is given
by |dz1|2 + |dz2|2. Because of this we refer to these metrics as ‘Flat metrics’.

• For every 0 6= p ∈ L we can find holomorphic coordinates (z1, z2) on a neighborhood U around p
such that U∩L = {z1 = 0} and the metric gF agrees with the model g(β) = β2|z1|2β−2|dz1|2+|dz2|2.

• Let λ > 0 and denote mλ(z, w) = (λz, λw). Write c = 2 + dβ − d. The neighborhoods in the
previous two items can be taken to be invariant under mλ and

r2 ◦mλ = λcr2

for all λ > 0. Note that 1.11 means that 0 < c < 2.

2.1 Spherical metrics with cone singularities on CP1

This subsection is a review of well-known material. Our main references are [33] and [27]. Our purpose
is to state, without a proof, Theorem 6 below.

First we give a local model for a spherical metric with a cone singularity. Let W be a wedge in the
two-sphere of radius 1 defined by two geodesics that intersect with angle πβ. Consider the model metric
given by identifying two copies of W isometrically along their boundary. The expression of this metric
in geodesic coordinates (ρ, θ) is

dρ2 + β2 sin2(ρ)dθ2. (2.4)

2.4 induces a complex structure on a punctured neighborhood of the origin given by an anti-clockwise
rotation of angle π/2. The fact is that we can change coordinates so that this complex structure extends

smoothly to 0. Indeed, if we write η = (tan(ρ/2))
1/β

eiθ our model metric takes the following form

4β2 |η|2β−2

(1 + |η|2β)2
|dη|2. (2.5)

Let L1, . . . , Ld ∈ CP1 be d distinct points. We want to define the notion of a spherical metric g with
a cone singularity of angle 2πβ at the given points. There are two equivalent points of view

• g is a metric on the two-sphere minus d points which is locally isometric to the round sphere of
radius 1 . Around each of the singular points there are polar coordinates (ρ, θ) such that g is given
by 2.4. The metric g endows the punctured sphere with the complex structure of CP1\{L1, . . . , Ld}.

• g is a compatible metric on CP1 \{L1, . . . , Ld} of constant Gaussian curvature equal to 1 . Around
each singular point we can find a complex coordinate η in which g is given by 2.5.

The content of the Gauss-Bonnet theorem in this setting reads as follows

Lemma 2 Let g be a spherical metric with cone angle 2πβ at d distinct points. Then the total volume
of g is

Vol(g) = 2π(2 + dβ − d). (2.6)
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Proof: Denote the standard round metric of radius 1 by g0 and write g = eφg0. Let ω and ω0 be the
corresponding area forms. Since Vol(g0) = 4π, we need to show that

1

2π

∫
CP1

ω − ω0 = dβ − d.

The function φ is smooth away of the d given points and the fact that the Gaussian curvature of both
metrics is 1 implies that ω = ω0 − i∂∂φ. Let p be a singular point and Cε be a circle that shrinks to p
as ε→ 0. By Stokes’ theorem it is enough to prove that

i

2π
lim
ε→0

∫
Cε

∂φ = β − 1.

This is an easy computation if we use coordinates in which g is given by 2.5.
�

The main result we want to recall is the following

Theorem 6 ([33], [27]). Let L1, . . . , Ld ∈ CP1 be d distinct points, d ≥ 2. If (d − 2)/d < β < 1 then
there exists a unique spherical metric with cone angle 2πβ at the given points.

We mention that when d = 3 and 1/3 < β < 1, the metric g is given by doubling the spherical
equilateral triangle T with interior angles equal to βπ. If G is a conformal equivalence between the
upper half plane and T , then g will be the pull back by G of the smooth constant curvature metric on
T , extended to C by requiring the conjugation map to be an isometry. The construction of such a map
G is related to the study of the hypergeometric equation. See Chapter 15 in [16]. The techniques used
to establish Theorem 6 are not used in this thesis. We give a brief sketch of the two different proofs of
6 given in our references.

• Luo-Tian [27]. First they prove the uniqueness of a spherical metric with cone angle 2πβ at
L1, . . . , Ld ∈ CP1. If g1 and g2 are two such metrics, then g2 = eψg1 for some function ψ. They
show that the gradient of ψ (w.r.t. any of the metrics) is an holomorphic vector field which vanishes
at the given points. The condition that β < 1 is needed. If d ≥ 3 it follows that g1 = g2.

To prove existence they define Pd to be the space of all boundaries of labeled d-vertex convex
polytopes in the round S3 with total angle of 2πβ at the vertices, modulo the ambient isometries.
The space Pd is endowed with the Hausdorff topology. The condition that (d − 2)/d < β ensures
that Pd is not empty. LetMd be the space of labeled d points in CP1 modulo the action of Möbius
transformations. The manifolds Pd and Md have the same dimension.

Each element of Pd represents a spherical metric on CP1 with cone angle 2πβ at d distinct points.
This is the metric induced by the round metric on S3. There is a natural map Π : Pd → Md

obtained by recording the complex structure given by the metric. The uniqueness they proved
implies that Π is injective. They use an elementary argument to show that Π is proper. SinceMd

is connected, it follows that Π is an homeomorphism. This concludes the proof of 6.

• Troyanov [33]. This only deals with the existence part. He starts with an arbitrary metric g0 which
has cone angle 2πβ at the points L1, . . . , Ld ∈ CP1. The goal is to find a continuous function φ,
smooth in the complement of the d given points, that solves the equation

40φ = K0 − e2φ. (2.7)

Where 40 is the Laplacian of g0 and K0 is the Gaussian curvature of g0. Then g = e2φg0 is
the desired spherical metric. In order to solve 2.7, Troyanov uses the variational method. The
hypothesis (d − 2)/d < β < 1 implies that the appropriate functional is bounded below. The
relevant technical point is to establish the Trudinger inequality and compute the value of the
Trudinger constant.
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2.2 Spherical metrics with cone singularities on the 3-sphere

This subsection contains the first step towards the proof of Proposition 1. We construct metrics on the
3-sphere with cone singularities of angle 2πβ transverse to the Hopf circles corresponding to L. First we
describe a local model for the singularities.

Write R4 = R2×R2 and take polar coordinates (r1, θ1), (r2, θ2) on each factor. Consider the product
of a standard cone of total angle 2πβ with an Euclidean plane

g(β) = dr21 + β2r21dθ
2
1 + dr22 + r22dθ

2
2. (2.8)

We want to write g(β) as a Riemannian cone. Recall that if (L, gL) is a compact Riemannian manifold
then the Riemannian cone (with link L) is the space (0,∞)×L with the metric dr2+r2gL. The coordinate
r is then characterized as the intrinsic distance to the apex. In our situation L is the 3-sphere and we
allow gL to have mild singularities. More generally we could speak about metric cones. The general fact
is that the product of two metric cones is a metric cone. In our case this amounts to checking that if we
define r ∈ (0,∞) and ρ ∈ (0, π/2) by

r1 = r sin ρ, r2 = r cos ρ;

then we get g(β) = dr2 + r2g(β), where

g(β) = dρ2 + β2 sin2(ρ)dθ21 + cos2(ρ)dθ22. (2.9)

We think of g(β) as a metric on the 3-sphere with a cone singularity of angle 2πβ transverse to the circle

given by the intersection of {0}×R2 with the unit sphere. Alternatively we can also say that g(β) is the
restriction of g(β) to the unit sphere.

Let S3 = {|z|2 + |w|2 = 1} ⊂ C2 equipped with the S1-action eit(z, w) = (eitz, eitw) and let
H : S3 → CP1 be the Hopf bundle. Denote by g the compatible metric on CP1 with constant curvature
Kg = 4 and cone angle 2πβ at the points corresponding to L. (Note that this is 1/4 times the spherical
metrics we considered in Subsection 2.1.)

Lemma 3 There is an S1-invariant metric g on S3 \ L such that

• H : (S3 \ L, g)→ (CP1 \ L, g) is a riemannian submersion.

• g is locally isometric to the round 3-sphere of radius 1.

• Each p ∈ L has a neighborhood in which g agrees with g(β).

Proof: First we write g in complex coordinates. W.l.o.g. we assume that Lj = {z = ajw} with aj ∈ C
for j = 1, . . . , d− 1 and Ld = {w = 0}. Set ξ = z/w, then g = e2φ|dξ|2 with φ a function of ξ. Consider
the function

u = φ− (β − 1)

d−1∑
j=1

log |ξ − aj |.

The point of defining u in this way is that around each aj there is a complex coordinate η centered at
aj in which

g = β2 |η|2β−2

(1 + |η|2β)2
|dη|2,

so that φ = log β + (β − 1) log |η| − log(1 + |η|2β). It is easy to check from here that u is a continuous
function on C and that

lim
ξ→aj

|ξ − aj |
∂u

∂ξ
= 0

for j = 1, . . . , d− 1. On C \ {a1, . . . , ad−1} define the real 1-form

α0 =
i

c
(∂u− ∂u), (2.10)
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where c = 2 + dβ − d. It follows that, for j = 1, . . . , d− 1,

lim
ε→0

∫
Cε(aj)

α0 = 0, (2.11)

where Cε(aj) = {|ξ − aj | = ε}. On the other hand

dα0 = −2i

c
∂∂u =

1

c
KgdVg, (2.12)

so 2.3 gives us that

1

2π

∫
C
dα0 = 1. (2.13)

On the trivial S1-bundle C \ {a1, . . . , ad−1} × S1 with coordinates (ξ, eit) consider the connection
α = dt+ α0 and the metric

g = g +
c2

4
α2. (2.14)

Let p = (ξ0, e
it0) ∈ C \ {a1, . . . , ad−1} × S1, we want to prove that g is isometric to the round sphere of

radius 1 in a neighborhood of p. There are polar coordinates (ρ, θ) around ξ0 in which

g = dρ2 +
sin2(2ρ)

4
dθ2.

In these coordinates dα0 = (1/c)KgdVg = (2/c) sin(2ρ)dρdθ. Doing a change of gauge if necessary we can
assume that α0 = (2/c) sin2(ρ)dθ. It follows that (c/2)α = (c/2)dt+sin2(ρ)dθ. If we assume t0 ∈ (−π, π),
say, and define t = (c/2)t we get

g = dρ2 +
sin2(2ρ)

4
dθ2 + (dt+ sin2(ρ)dθ)2.

This can be recognized as the round sphere of radius 1. We use the map

(ξ, eit)→

(
z =

ξ√
1 + |ξ|2

eit, w =
1√

1 + |ξ|2
eit

)

to think of g as a metric on S3 \ L. The S1 invariance and the first item of the lemma are clear from
the definition 2.14 of g. We already checked the second item so let’s prove the last one.

Assume first that p ∈ Lj for some 1 ≤ j ≤ d − 1. Write p = (aj , e
it0). There are polar coordinates

(ρ, θ) around aj in which

g = dρ2 + β2 sin2(2ρ)

4
dθ2.

In these coordinates dα0 = (1/c)KgdVg = (2/c)β sin(2ρ)dρdθ. It follows from 2.11 that we can perform
a change of gauge so that α0 = (2/c)β sin2(ρ)dθ. It follows that (c/2)α = (c/2)dt + β sin2(ρ)dθ. If we
assume t0 ∈ (−π, π), say, and define t = (c/2)t we have that

g = dρ2 + β2 sin2(2ρ)

4
dθ2 + (dt+ β sin2(ρ)dθ)2.

Write θ2 = t, θ1 = θ+β−1t to get g = dρ2+β2 sin2(ρ)dθ21 +cos2(ρ)dθ22. This matches with the expression
2.9 of the metric g(β). Finally consider the case of p ∈ Ld = {w = 0}. In the coordinates

(η, eis)→

(
z =

1√
1 + |η|2

eis, w =
η√

1 + |η|2
eis

)
we have p = (0, eis0). These coordinates are related to (ξ, eit) via η = 1/ξ and eis = (ξ/|ξ|)eit. So that
α = dt+ α0 = ds+ β0 with β0 = d(arg η) + α0. Now limε→0

∫
|η|=ε α0 = − limN→∞

∫
|ξ|=N α0. It follows
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from 2.11, 2.13 and Stokes’ theorem that limN→∞
∫
|ξ|=N α0 = 2π. As a result limε→0

∫
|η|=ε β0 = 0. From

here we can proceed as before, finding polar coordinates in which g = dρ2 + β2 sin2(2ρ)
4 dθ2 and changing

gauge so that β0 = (2/c)β sin2(ρ)dθ.
�

We have set
c = 2 + dβ − d. (2.15)

This number will appear frequently in the following sections.

Remark 2 The proof above gives us that the fibers of H have constant length πc. Since Vol(g) = (π/2)c
we have Vol(g) = (π2/2)c2.

In a coordinate free way we can say that the metric of Lemma 3 is given by 2.14 . Where α is
the unique connection, up to gauge equivalence, on the Hopf bundle with dα = c−1H∗(KgdVg) which
satisfies the following condition:

• If p ∈ CP1 is a point in L and γε is a loop that shrinks to p as ε→ 0, then the holonomy of α along
γε goes to the identity as ε→ 0.

2.3 Proof of Proposition 1

Having Lemma 3 at hand we prove Proposition 1 in this subsection. We set gF to be the Riemannian
cone with (S3, g) as a link and we check that it has the desired properties.

On (0,∞)× C \ {a1, . . . , ad−1} × S1 with coordinates (r, ξ, eit) define

gF = dr2 + r2g. (2.16)

We use the notation introduced in Lemma 3 and we write ξ = x + iy. Consider the almost-complex
structure given by

I
∂̃

∂x
=

∂̃

∂y
, I

∂

∂r
=

2

cr

∂

∂t

where

∂̃

∂x
=

∂

∂x
− α

(
∂

∂x

)
∂

∂t
,

∂̃

∂y
=

∂

∂y
− α

(
∂

∂y

)
∂

∂t

are the horizontal lifts of ∂/∂x and ∂/∂y. Finally set ωF = gF (I., .).

Claim 1
(
(0,∞)× C \ {a1, . . . , ad−1} × S1, gF , I

)
is a Kähler manifold. I.e. dωF = 0 and I is inte-

grable. Moreover,

ωF =
i

2
∂∂r2. (2.17)

Proof: We compute in the coframe {dx, dy, dr, α} where

ωF = r2e2φdx ∧ dy +
cr

2
dr ∧ α,

so that dωF = 2re2φdrdxdy − (cr/2)(4/c)e2φdrdxdy = 0. The integrability of I amounts to check that[
∂̃

∂x
+ i

∂̃

∂y
,
∂

∂r
+ i

2

cr

∂

∂t

]
= 0.

Finally dId(r2) = d(2rIdr) = −cd(r2α) = −2crdr ∧ α − 4r2e2φdx ∧ dy. Using that 2i∂∂ = −dId we
deduce 2.17

�

18



Claim 2 Set A to be the constant (c/2)1/c. The functions

z = ξw, w = Ar2/ceu/ceit (2.18)

give a biholomorphism between (0,∞)×C \ {a1, . . . , ad−1}×S1 with the complex structure I and C2 \L.
If we write Ω = (

√
2)−1dzdw, then

ω2
F = |Pd|2β−2Ω ∧ Ω. (2.19)

Proof: It is easy to see that the pair (z, w) defines a diffeomorphism between the corresponding spaces.
The Cauchy-Riemann equations for a function h to be holomorphic with respect to I are given by

∂h

∂r
+ i

2

cr

∂h

∂t
= 0,

∂h

∂x
+ i

∂h

∂y
= α

(
∂

∂x
+ i

∂

∂y

)
∂h

∂t
.

If we ask h to have weight 1 with respect to the circle action the equations become

∂h

∂r
=

2

cr
h,

∂h

∂ξ
= iα

(
∂

∂ξ

)
h =

1

c

∂u

∂ξ
h.

From here we see that see that z and w are holomorphic.
Now we compute the volume form of gF in the complex coordinates z, w. First define a basis {τ1, τ2}

of the (1, 0) forms

τ1 = dr + i
cr

2
α, τ2 = eφrdξ. (2.20)

Up to a factor of
√

2 this is an orthonormal basis for the (1, 0) forms in C2 \ L, i.e.

ωF = (i/2)τ1τ1 + (i/2)τ2τ2.

Define a two by two matrix (aij) by means of

dz = a11τ1 + a12τ2, dw = a21τ1 + a22τ2.

From here we get
Ω ∧ Ω = |det(aij)|2ω2

F .

Since z = ξw we have that a11 = ξa21 and a12 = ξa22+we−φr−1. It follows that det(aij) = −we−φr−1a21.
We can easily compute, from the formula given for w, that a21 = (2/c)r−1w. We put these things together
to get

ω2
F = (c2/4)|w|−4r4e2φΩ ∧ Ω.

Now we use that r4 = (4/c2)|w|2ce−2u, φ− u = (β − 1)
∑d−1
j=1 log |(z/w)− aj | and 2c− 4 = 2dβ − 2d =

2β − 2 + (d− 1)(2β − 2) to conclude that

ω2
F = |z − a1w|2β−2 . . . |z − ad−1w|2β−2|w|2β−2Ω ∧ Ω.

This is formula 2.19.
�

The proof of Proposition 1 is now complete. Note that we have two natural systems of coordinates: the
complex coordinates (z, w) and the spherical coordinates (r, θ), where θ denotes a point in the 3-sphere.
For λ > 0 define Dλ(r, θ) = (λr, θ) and mλ(z, w) = (λz, λw). Equation 2.18 gives that Dλ = mλ2/c and
Equation 2.17 implies that m∗λωF = λcωF . In our derivation, the number c comes from the Gauss-Bonnet
formula 2.3. Alternatively, assume that m∗λωF = λc̃ωF for some c̃ > 0. If we pull back the equation 2.19
by mλ we get that c̃ must agree with c.

We summarize the results of this subsection in the form of a recipe which allows us to go from the
metric gF on C2 in Proposition 1 to the corresponding g on CP1 in Theorem 6 and vice versa. From
2.18 we get
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r2 =
2

c
|w|ce−u. (2.21)

We recall that

u = φ− (β − 1)

d−1∑
j=1

log |ξ − aj | , g = e2φ|dξ|2. (2.22)

Where φ a function of ξ = z/w. We are writing the lines as Lj = {z = ajw} with aj ∈ C for
j = 1, . . . , d− 1 and Ld = {w = 0}. 2.21 together with 2.22 allow us to write gF explicitly in terms of g
and vice-versa.

2.4 Explicit examples and quotients

In this subsection we write explicit expressions for the metrics gF in the particular cases of d = 2,
0 < β < 1 and d = 3, β = 1/2. We take this as a chance to test the equations 2.21 and 2.22.

Let us begin with the case d = 2 and 0 < β < 1. It turns out that the local model for a spherical
metric with angle 2πβ at 0 given by

g = β2 |ξ|2β

(1 + |ξ|2β)2
|dξ|2, (2.23)

defines globally a metric on CP1 with angle 2πβ at 0 and∞. This space is also known as the ‘rugby ball’
since it is obtained by removing a spherical wedge of angle 2π(1− β) delimited by two geodesics joining
antipodal points and gluing the sides. We use our formula 2.21 to get r2 = β−2(|z|2β + |w|2β), so that
gF = |z|2β−2|dz|2 + |w|2β−2|dw|2. Up to a constant factor this is the space Cβ×Cβ . When β = 1/k with
k a natural number, the metric gF is a global quotient of the euclidean metric. Indeed, let Ak ⊂ SU(2)
be the cyclic group generated by (x, y)→ (e2πi/kx, e−2πi/ky). The functions z = xk, w = yk and t = xy
are invariant under the action of Ak and give a complex isomorphism

C2/Ak ∼= {zw = tk} ⊂ C3.

Consider the group G ⊂ U(2) generated by Ak and (x, y) → (e2πi/kx, y). Then Ak ⊂ G is normal
and G/Ak ∼= Zk acts on C2/Ak via (z, w, t) → (z, w, e2πi/kt). The functions z, w give a complex
isomorphism C2/G ∼= C2. We can push forward the euclidean metric since G ⊂ U(2). If we take
care of the normalization of the volume form we get the same expression for gF as the one we derived
before. Note that the map Φ : C2 → C2 , Φ(x, y) = (xk, yk), maps complex lines to complex lines.
Φ ({x = ηy}) = {x = ηky}, therefore Φ induces a map F on CP1 given by ξ = F (η) = ηk. We can
pullback the metric 2.23 (with β = 1/k) under F to get F ∗g = (1 + |η|2)−2|dη|2, the round metric on
the sphere of radius 1/2.

Now consider the case when d = 3 and β = 1/2 . We take our lines to be L1 = {z = 0}, L2 =
{z = w} and L3 = {w = 0}. Let D4 ⊂ SU(2) be the subgroup generated by (x, y) → (ix,−iy) and
(x, y) → (−y, x). The polynomials z = (x2 + y2)2, w = (x2 − y2)2 and t = 2(x5y − y5x) are invariant
under the action and give the complex isomorphism

C2/D4
∼= {zw(z − w) = t2}.

Let G ⊂ U(2) be the subgroup generated by D4 and (x, y) → (y, x). Then D4 ⊂ G is normal and
K = G/D4

∼= Z2 acts on C2/D4 as (z, w, t) → (z, w,−t). The functions z, w give an isomorphism of
complex manifolds C2/G ∼= C2. We can push forward the euclidean metric ωeuc = (i/2)∂∂(|x|2 + |y|2) to
obtain a flat Kähler metric with cone angle β = 1/2 along L. From the formulas for z, w we have that
|z| + |w| = 2|x|4 + 2|y|4 and |z − w| = 4|x|2|y|2 so that 2(|x|2 + |y|2)2 = |z| + |w| + |z − w|. From here
we get that

r2 = a (|z|+ |w|+ |z − w|)1/2 , (2.24)

where a = 8
√

2 is determined by the normalization condition 2.1. We can now use the equations 2.21
2.22 to get

g =
1

8

1

|ξ||ξ − 1|+ |ξ|2|ξ − 1|+ |ξ||ξ − 1|2
|dξ|2
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Indeed, the map Φ : C2 → C2 given by Φ(x, y) =
(
(x2 + y2)2, (x2 − y2)2

)
maps lines to lines and induces

F : CP1 → CP1 given by

ξ = F (η) =
(η2 + 1)2

(η2 − 1)2
. (2.25)

Then one can check that F ∗g = (1 + |η|2)−2|dη|2 (the smooth metric with constant curvature 4). The
map F has degree 4 and has six critical points at 0,±1,±i,∞. It maps the spherical triangle T = {|η| ≤
1, 0 ≤ arg(η) ≤ π/2} to the upper half plane H = {Im(ξ) ≥ 0}. Then we recognize g as the metric
obtained by gluing two copies of T along the boundary.

2.5 A different approach

We mention another approach to Proposition 1. This fits our work into the setting of the so called
‘Calabi ansatz’ (see page 11 of LeBrun [25]). In this subsection we view a Kähler metric as the curvature
form of a Hermitian metric on a complex line bundle.

We think of C2 as the total space of OCP1(−1) with the zero section collapsed at 0. The bundle
projection is given by Π : C2 \ {0} → CP1, Π(z, w) = [z : w]. We can then identify (smooth) Hermitian
metrics on OCP1(−1) with (smooth) functions h : C2 → R≥0 such that h(λp) = |λ|2h(p) for all λ ∈ C,
p ∈ C2 and h(p) = 0 only when p = 0. The first basic fact we need is that an area form ω in CP1 induces
a Hermitian metric hω. We use coordinates ξ = z/w, η = w/z on CP1. Write ω = e2φ(i/2)dξdξ with
φ = φ(ξ) on U = Π({w 6= 0}) and ω = e2ψ(i/2)dηdη with ψ = ψ(η) on V = Π({z 6= 0}). Then hω is
given by

hω = |w|2e−φ, if w 6= 0; hω = |z|2e−ψ, if z 6= 0. (2.26)

The second basic fact is that a Hermitian metric h gives a 2-form ωh on CP1 by means of

ωh = i∂∂ log h(ξ, 1) on U, and ωh = i∂∂ log h(1, η) on V. (2.27)

We also mention that h induces Hermitian metrics on the other complex line bundles over CP1. If we
regard Pd as a section of OCP1(d), then we have |Pd|2h = h(ξ, 1)−d|ξ − a1|2 . . . |ξ − ad−1|2 on U and a
corresponding expression on V .

One can then rephrase the existence of the spherical metric with cone singularities g on CP1 by saying
that there is a Hermitian metric h, continuous on C2 and smooth outside L such that

h = |Pd|β−1h hωh (2.28)

Where by |Pd|h we mean |Pd|h ◦Π. Here we could be more precise and instead of saying that h is merely
continuous we could give a local model for h around points of L. From 2.28 one gets that ωh has constant
Gaussian curvature equal to c = 2 + dβ − d outside L and one can also argue that (2π)−1

∫
CP1 ωh = 1.

The potential for ωF is then given by r2 = ahc/2 for some constant a > 0 determined by 2.1.

3 Reference Metrics

Recall thet we denote by D the set of diffeomorphisms H of C2 which, outside a compact set, map the
curve C to the asymptotic lines L and are asymptotic to the identity in the following sense: H(x) =
x+h(x), with Dαh(x) = O(|x|−|α|) for any multi-index α. The main result of this section is the following

Proposition 2 There exist H ∈ D and Kähler metrics ω, ωB on C2 with cone singularities of angle
2πβ along C such that

• |(H−1)∗ω − ωF |gF = O(r−2/c)

• Bisec(ωB) ≤ Q1

• Q−12 ωB ≤ ω ≤ Q2ωB

for some positive constants Q1, Q2.
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We review the definition of a metric having cone singularities in Subsection 4.1. The statement about
the singularities will follow from the fact that around points of C one can write the metrics as (smth)
+i∂∂(F |z1|2β) with F a smooth positive function and where (smth) denotes a smooth (1, 1) form positive
in the direction tangent to C. (See Remark 1 in the Introduction and Lemma 12 in this Section). The
metric ω is isometric to the flat metric ωF in a neighborhood of C at infinity. In the notation of the next
subsection this neighborhood is Uδ/2,2R.

3.1 A diffeomorphism

Let C = {P = 0}. The homogeneous degree d part of P is Pd = l1 . . . ld. We write lj = z − ajw, for
j = 1, . . . , d− 1 and ld = w. W.l.o.g. let us assume that aj 6= 0 for all j = 1, . . . , d− 1. First we look at
the piece of C which is asymptotic to Ld = {w = 0}.

Lemma 4 There exist R, δ > 0 and Φ = Φ(z) : {|z| > R} → C bounded holomorphic, which depend only
on P , such that

C ∩ Ud,δ,R = {(z,Φ(z))},
where Ud,δ,R = {|w| < δ|z|, |z| > R}.

Figure 3: In the region Ud,δ,R the curve can be written as a graph.

Proof: For j = 1, . . . , d − 1 let Sj be an orthogonal linear transformation that takes Ld to Lj . Write
Uj;δ,R = Sj(Ud;δ,R) and Uδ,R = ∪dj=1Uj;δ,R. Taking δ small enough we can assume that the sets Uj,δ,R
are pairwise disjoint. Write

P = Pd +Q (3.1)

with Q a polynomial of degree d−1. On the complement of Uδ,R we have that |Pd(x)| ≥ C1|x|d for some
C1 > 0. Since deg(Q) = d− 1 we can find C2 > 0 such that |Q(x)| ≤ C2|x|d−1. It follows that for R big
enough

C ∩ {|z| > R} ⊂ Uδ,R. (3.2)

For each z with |z| > R we write

P (z, w) = Pz(w) = a(w − h1(z)) . . . (w − hd(z)). (3.3)

With a = (−1)d−1a1 . . . ad−1 6= 0 and hj : {|z| > R} → C holomorphic. It follows from 3.2 that for each
j, {(z, hj(z)), |z| > R} ⊂ Ui,δ,R for some i = i(j). In particular this implies that there is a constant
A > 0 such that

|hj(z)| ≤ A|z| (3.4)
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for j = 1, . . . , d. We want to show that we can label the functions hj in a way such that i(j) = j. First
we note that if i(j0) = d then hj0 is bounded. Indeed |l1 . . . ld−1(x)| ≥ c|x|d−1 for some c > 0 and all
x ∈ Ud,δ,R, so that |hj0(z)| = |Q|/|l1 . . . ld−1| ≤ C2/c. From 3.3 we get that the coefficient in front of w
in the polynomial Pz(w) is given by

(−1)d−1a

d∑
j=1

Πi 6=jhi(z). (3.5)

On the other hand 3.1 and Pd = w(z − a1w) . . . (z − ad−1w), imply that 3.5 is a polynomial of degree
d − 1 in z (with leading term zd−1) . If we had i(j0) = i(j1) = d for some j0 6= j1 then hj0 and hj1
would be bounded. This together with the bound 3.4 would imply that the absolute value of 3.5 would
be bounded by a constant times |z|d−2, contradicting 3.5 being a degree d− 1 polynomial.

Changing coordinates we can argue the same way for the other asymptotic lines. We conclude that
the map j → i(j) is injective and we can perform the desired labeling. The lemma follows by setting
Φ = hd. In fact hj(z) = (1/aj)z + φj(z) with φj bounded for j = 1, . . . d− 1 so that 3.3 gives

P (z, w) = (l1 + φ1) . . . (ld−1 + φd−1)(w − Φ) (3.6)

�

Lemma 5 Let δ > 0 be small enough and R > 0 big enough, then there exists a diffeomorphism H ∈ D
such that H is holomorphic in Uδ/2,2R and H is the identity outside Uδ,R.

Proof: Let χ = χ(t) be a smooth cut-off function with χ(t) = 1 for t ≤ 1 and χ(t) = 0 for t ≥ 2. We first
define H in the region asymptotic to Ld. Let

h(z, w) = χ

(
2|w|
δ|z|

)
(1− χ)(R−1|z|). (3.7)

It follows that h = 1 on Ud,δ/2,2R, h = 0 outside Ud,δ,R and |Dαh(x)| ≤ C|α||x|−|α| for any multi-index
α. We set

Hd(z, w) = (z, w − hΦ). (3.8)

Since Φ is a bounded holomorphic function of z and in the region Ud,δ,R we have |z| ≥ c|(z, w)| for some
c > 0, we conclude that there are constants Aj such that |Hd(x) − x| ≤ A0 , |DHd(x) − Id| ≤ A1|x|−1
and |DαHd(x)| ≤ Aj |x|−j for all x ∈ C2 and j = |α| ≥ 2. We proceed similarly for the other asymptotic
regions, and in an obvious notation we set

H = H1 ◦ . . . ◦Hd. (3.9)

�

From now on we fix δ,R > 0 and H.

3.2 Construction of ω

We start by deriving some consequences of

r2 ◦mλ = λcr2 (3.10)

for all λ > 0 and c = 2 + dβ− d. First of all we get that m∗λωF = λcωF . Since ωF is positive we can find
a > 0 such that ωF ≥ aωeuc on the euclidean unit sphere, the scaling property then gives

ωF (p) ≥ a|p|c−2ωeuc. (3.11)

For every p ∈ C2. (|p| denotes the euclidean norm). On the other hand, from the continuity of r one
gets

b−1|p|c ≤ r2(p) ≤ b|p|c (3.12)
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for some b > 0. Differentiating equation 3.10 on C2 \ L we get that Dαr ◦ mλ = λc−|α|Dαr for any
multi-index α. For ε > 0 denote Uε = Uε,0, with the notation as in the previous subsection. From the
smoothness of r on the complement of L it follows that

|Dαr2(p)| ≤ A|p|c−|α| (3.13)

on C2 \ Uε, where the constant A depends on ε and |α|. It follows from 3.13 and 3.11 that in the
complement of Uε there exist aε > 0 such that

aε|p|c−2ωeuc ≤ ωF (p) ≤ a−1ε |p|c−2ωeuc. (3.14)

Let us denote by I the complex structure of C2 and let G be the inverse of H.

Lemma 6
|G∗I − I|gF = O(r−2/c). (3.15)

Proof: First we note that |G∗I − I|geuc = O(|p|−1), since G∗I − I is basically given by ∂G. From 3.12
we can replace O(|p|−1) with O(r−2/c). Secondly, there exist ε > 0 such that G is holomorphic in U2ε.
(More precisely this is true outside a compact set). So G∗I = I in U2ε. In a vector space with an inner
product the norm of an endomorphism doesn’t change if we multiply the inner product by a positive
constant. Hence |G∗I − I||p|c−2geuc = O(|p|−1). Finally 3.14 gives the lemma.

�

We move on and define

η =
i

2
∂∂(r2 ◦H). (3.16)

Lemma 7 There exists a compact K such that η > 0 outside K. Moreover,

|G∗η − ωF |gF = O(r−2/c).

Proof: Denote H(z, w) = (u, v), so that r2 = r2(u, v). Write U = Uδ,R and U ′ = Uδ/2,2R, the subsets
introduced in the previous subsection. We remove compact sets whenever necessary. Note that G∗η = ωF
in H(U ′), clearly we can pick ε > 0 such that Uε ⊂ H(U ′). In C2 \H(U ′) we are then able to use the
bounds 3.13. Set p0 = (u0, v0) = H(x0) with x0 = (z0, w0) /∈ U ′. First we compute η(x0)

∂

∂z
(r2 ◦H) =

∂r2

∂u

∂u

∂z
+
∂r2

∂u

∂u

∂z
+
∂r2

∂v

∂v

∂z
+
∂r2

∂v

∂v

∂z
,

∂2

∂z∂z
(r2 ◦H) =

∂2r2

∂2u

∂u

∂z

∂u

∂z
+
∂2r2

∂u∂u

∂u

∂z

∂u

∂z
+
∂2r2

∂u∂v

∂v

∂z

∂u

∂z
+
∂2r2

∂u∂v

∂v

∂z

∂u

∂z
+
∂r2

∂u

∂2u

∂z∂z

+(. . .),

where (. . .) consists of 15 terms that the reader can figure out. The second term is equal to

∂2r2

∂u∂u
(p0)

(
1 +O(|x|−1)

)
.

The first, third and fourth terms can be bounded by A|x|c−2|x|−1 and the fifth by A|x|c−1|x|−2 for some
constant A > 0. It is easy to see that the remaining 15 terms can be bounded by A|x|c−2|x|−1 (the ones
which contain second derivatives of r2) or A|x|c−1|x|−2 (the ones which contain second derivatives of
H). We conclude that we can bound all this terms by a constant times |x|c−3. We argue similarly for
the other derivatives in ∂∂(r2 ◦H) to conclude that

G∗η(p0) = ωF (p0) +O(|x|c−3)dzdz +O(|x|c−3)dzdw +O(|x|c−3)dwdz +O(|x|c−3)dwdw

Note that dzdz = dudu + ν where ν is a 2-form with |ν|euc = O(|p|−1). From 3.11 we get |dudu|gF =
O(|x|2−c). We argue equally for the other terms to conclude that
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|G∗η − ωF |gF (p0) = O(|p0|−1). (3.17)

3.12 then gives the result.
�

Remark 3 As we already said, G∗(η) = ωF on a region Uδ′,R′ for some δ′, R′ > 0. In the complement
of this region one can extend 3.17 to

|∇i(G∗η − ωF )|gF (p0) = O(r−(2/c)−i), (3.18)

where ∇ is the Levi-Civita connection of gF .

We continue with the construction of ω. Let h be a cut-off function with h = 1 on BN (the euclidean
ball of radius N , say) and h = 0 on BcN+1 where N is large enough so that C ∩ BcN ⊂ U ′ and η > 0
outside BN . Consider

ω′ =
i

2
∂∂
(
h|P |2β + (1− h)(r2 ◦H)

)
. (3.19)

Note that ω′ = η > 0 on BcN+1. On the other hand

ω′ =
i

2
∂∂|P |2β = β2|P |2β−2 i

2
∂P ∧ ∂P ≥ 0

on BN . Finally consider the annulus BN+1 \BN

Claim 3 There is a > 0 such that ω′ ≥ −aωeuc on BN+1 \BN .

Proof: Indeed, for x ∈ C ∩ (BN+1 \ BN ) we can find holomorphic coordinates (z1, z2) such that C =
{z1 = 0} and r2 ◦H = |z1|2β + |z2|2. In this coordinates P = fz1 for some non-vanishing holomorphic
f . Then we have 2ω′ = i∂∂

(
h(|f |2β |z1|2β) + (1− h)(|z1|2β + |z2|2)

)
= (smooth) +i∂∂u, where u =

|z1|2β(h|f |2β + 1 − h). On a smaller neighborhood we can assume |f |2β ≥ ε > 0 so that i∂∂u =
iu∂ log u ∧ ∂ log u + ui∂∂ log u ≥ ui∂∂ logF where F = h|f |2β + 1 − h. Note that F is smooth and
F ≥ min{ε, 1} to conclude the claim. �

Lemma 8 There is a Kähler metric ω on C2 with cone singularities of angle 2πβ along C such that
ω = η outside a compact set.

Proof: Let χ = χ(t) be a smooth cut-off function with χ(t) = 1 for t ≤ 1 and χ(t) = 0 for t ≥ 2. For
L > 0 and x ∈ C2 let χL(x) = χ(L−1|x|). Set φ = log(1 + |z|2 + |w|2) and define

ωL = ω′ + iK∂∂(χLφ) (3.20)

with K > 0 such that Ki∂∂φ + ω′ > 0 and L > N + 2. If L is big enough we can assume that on the
annulus on B2L \BL, ω′ = η. Recall that |η|euc ≥ C1|x|c−2 on the other hand, on B2L \BL we can bound
|∂∂(χLφ)|euc ≤ C2|x|−2 log |x| (with C2 independent of L). Taking L large we get that ωL is positive
everywhere. Fix such a large L and define ω = ωL. The statement about the cone singularities follows
from Lemma 12.

�

For reference in the future we say something about the volume form of ω. Define a function f in C2

by means of the equation
ω2 = ef |P |2β−2Ω ∧ Ω. (3.21)

Lemma 9 Outside a compact set f is a smooth function with

|Dαf(x)| ≤ A|α||x|−1−|α|. (3.22)
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Proof: Consider first the complement of Uδ,R, where H is the identity and η = ωF . Compare 2.1 and
3.21 to obtain

ef = |P |2−2β |Pd|2β−2 =

∣∣∣∣1 +
Q

Pd

∣∣∣∣2−2β .
In the complement of Uδ,R we have constants b|α| such that

|Dα(Q/Pd)|(x) ≤ b|α||x|−1−|α|.

3.22 then follows from f = (2 − 2β) log |1 + Q/Pd|. Secondly we consider the region Uδ/2,2R, where H

is holomorphic and η = H∗ωF . We see that ef = |P/(Pd ◦H)|2−2β . We focus in Ud,δ/2,2R and use 3.6
to get P/(Pd ◦ H) = (1 + ψ1(z)) . . . (1 + ψd−1(z)) where ψj(z) are holomorphic with |ψj(z)| ≤ A|z|−1
for some A > 0. Note that in Ud,δ/2,2R we have |z| ≥ a|(z, w)| for some a > 0. As before we get 3.22.
Finally consider the region Uδ,R \Uδ/2,2R. By Lemma 7 we can write η = H∗ωF + ξ where ξ is a 2-form

with |ξ|gF = O(|x|−1). We conclude that η2 =
(
1 +O(|x|−1)

)
H∗ω2

F and we can proceed as before.
�

At this point we have proved the first item in Proposition 2. We call ω our reference metric. In the
future we will need a metric with bisectional curvature bounded from above. The author was not able
to prove that ω has this property. To remedy this we introduce another metric, ωB . This is the content
of the next subsection.

3.3 Upper bound on Bisec(ωB)

First we define ωB . Fix 0 < δ < c. Note that the function p→ |p|δ is plurisubharmonic in C2. In fact,

a−1|p|δ−2ωeuc ≤ i∂∂|p|δ ≤ a|p|δ−2ωeuc

for some a > 0. The diffeomorphism H is asymptotic to the identity, so that there is K > 0 such that,
outside a ball of radius K, a−1|p|δ−2ωeuc ≤ i∂∂|H|δ ≤ a|p|δ−2ωeuc. In the construction of ω (Lemma 8)
we take L >> K. Let ψ = ψ(t) be a smooth convex function of one real variable which is equal to the
identity for large values of t and is constant when t ≤ K. Define h = ψ ◦ |H|δ, then h is smooth and
ν = i∂∂h = ψ′′i∂|H|δ ∧ ∂|H|δ +ψ′i∂∂|H|δ, since the first term is non-negative we have that ν ≥ 0 in all
of C2. Moreover, outside a compact set there is a > 0 such that

a−1|p|δ−2ωeuc ≤ ν(p) ≤ a|p|δ−2ωeuc.
We define ωB as

ωB = ω + Λν, (3.23)

where Λ > 0 will be specified later on. From the definition it follows that

Q−12 ω ≤ ωB ≤ Q2ω (3.24)

for some Q2 > 0. The goal is to prove the following

Lemma 10
Bisec(ωB) ≤ Q1.

Let us start by recalling the definition of bisectional curvature. Let ω be a Kähler metric on an open
subset U of C2. For x ∈ U and v, w ∈ T 1,0

x C2 with |v|ω = |w|ω = 1 we set

Bisecω(v, w) = R(v, v, w,w),

where R is the Riemann curvature tensor of ω. Recall that if (z1, z2) are holomorphic coordinates around

x in which ω =
∑2
i,j=1 gijidzidzj and v = v1∂/∂z1 + v2∂/∂z1, w = w1∂/∂z1 + w2∂/∂z2 then

Bisecω(v, w) =

2∑
i,j,k,l=1

Rijklvivjwkwl,
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where

Rijkl = −gij,kl +

2∑
s,t=1

gstgit,kgsj,l.

Indexes after the comma indicate differentiation and (gij) denotes the inverse transpose of the positive
Hermitian matrix (gij), the index i being for the rows and j for the columns.

In Appendix A of [20] it is shown that if η is a smooth Kähler form in the unit ball B1 ⊂ C2, say,
and F is a smooth positive function such that

ω = η + i∂∂(F |z1|2β) (3.25)

is Kähler on B1 \ {z1 = 0}. Then there exist a number C such that Bisec(ω) ≤ C on B1/2 \ {z1 = 0},
say. We choose Λ > 0 in 3.23 such that ωB can be written in the form 3.25 around the points of the
curve. Then [20] gives us an upper bound on Bisec(ωB) on compacts sets. In order to extend this bound
to C2 we use the ‘asymptotically conical’ behavior of ωB .

At points x ∈ C where χL(x) = 0 the metric ω in Lemma 8 can’t be written in the form 3.25.
(Compare with the one in Lemma 12). The author hasn’t been able to get an upper bound on Bisec(ω)
around such points.

To prove Lemma 10 it suffices to bound from above Bisec(ωF + G∗ν) in a region Uδ0,R0
for some

δ0, R0 > 0. Note that outside a compact set G∗ν = i∂∂|p|δ. Let 0 6= q ∈ L and B a neighborhood of q
where there exist coordinates (ξ1, ξ2) which map B to the unit ball in C2 in which ωF = |ξ1|2β−2idξ1dξ1+
idξ2dξ2. We might also assume that |q| ≥ 2 and that B is contained in the euclidean ball of radius half
the euclidean distance from q to 0. Let mλ : B → λB for λ ≥ 1 be the multiplication by λ in C2. We
simplify notation and write ν for G∗ν. Then

m∗λ(ωF + ν) = λc(ωF + λδ−cν).

We will show that we have an upper bound for the bisectional curvature of ωF +λ−cm∗λν on B1/2 which
is independent of λ ≥ 1. By a covering argument this gives the desired bound on Uδ0,R0

and hence proves
Lemma 10.

Write νij = ν( ∂
∂ξi
, ∂
∂ξj

). Let Q > 0 be such that

Q−1(δij) ≤ (νij) ≤ Q(δij); |νij,k| ≤ Q; |νij,kl| ≤ Q (3.26)

on B1/2. Write ω = ω(β) + εν with ν a smooth Kähler form in the unit ball in C2 , 0 < ε < 1,

ω(β) = |ξ1|2β−2idξ1dξ1 + idξ2dξ2

and

ν =

2∑
i,j=1

νijidξidξj .

The desired bound then follows from the following

Lemma 11 There is a constant C, independent of ε > 0, such that Bisec(ω) ≤ C on B1/2. In fact C
depends only on Q, where Q > 0 is such that, on B1/2 , Q−1ωeuc ≤ ν ≤ Qωeuc and |νij,k|, |νij,kl| ≤ Q
for any i, j, k, l.

Proof: This follows the lines of Appendix A in [20]. Write

ω = |ξ1|2β−2idξ1dξ1 +

2∑
i,j=1

g̃ijidξidξj ,

so that

g̃11 = εν11, g̃12 = εν12 g̃22 = 1 + εν22.
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Let x = (x1, x2) ∈ B1/2 \ {ξ1 = 0}. Define new coordinates (z1, z2) around x via

ξ1 = z1

ξ2 = z2 +
a

2
(z1 − x1)2 + b(z1 − x1)(z2 − x2) +

c

2
(z2 − x2)2,

where
a = −(g̃22(x))−1g̃12,1(x), b = −(g̃22(x))−1g̃12,2(x), c = −(g̃22(x))−1g̃22,2(x).

In this new coordinates we have

ω = |z1|2β−2idz1dz1 +
∑
i,j

ĝijidzidzj .

Claim 4 ĝij,k(x) = 0 when j 6= 1.

Indeed, write dξ2 = Adz1 +Bdz2, with A = a(z1−x1)+b(z2−x2) and B = 1+b(z1−x1)+c(z2−x2).
A straightforward computation gives

ĝ12 = g̃12B + g̃22AB, ĝ22 = |B|2g̃22.

From here we get

ĝ12,1(x) = g̃12,1(x) + g̃22(x)a, ĝ12,2(x) = g̃12,2(x) + g̃22(x)b, ĝ22,2(x) = g̃22,2(x) + g̃22(x)c.

Our choice of a, b, c implies that these three numbers are zero. The Kähler condition ĝij,k = ĝkj,i implies
that ĝ22,1(x) = ĝ12,2(x) = 0 and the claim follows.

We compute the bisectional curvature of ω at x using the coordinates (z1, z2). Let v = v1∂/∂z1 +
v2∂/∂z1 and w = w1∂/∂z1 + w2∂/∂z2 ∈ T 1,0

x C2 with |v|ω = |w|ω = 1. Note that this implies that

|v1|, |w1| ≤ C|z1|1−β and |v2|, |w2| ≤ C. Write ω =
∑2
i,j=1 gijidzidzj . So that gij = ĝij when (i, j) 6=

(1, 1) and g11 = |z1|2β−2 + ĝ11. Write Bisecω(v, w) = T1 + T2, where

T1 = −
∑
i,j,k,l

gij,kl(x)vivjwkwl

and

T2 =

2∑
s,t,i,j,k,l=1

gst(x)git,k(x)gsj,l(x)vivjwkwl.

Claim 5
T1 ≤ C − (β − 1)2|z1|2β−4|v1|2|w1|2.

In fact g11,11 = (β − 1)2|z1|2β−4 + ĝ11,11, and we have

ĝ11 = g̃11 +Ag̃21 +Ag̃12 + |A|2g̃22.

From here we compute

ĝ11,11(x) = g̃11,11(x) + ag̃21,1(x) + ag̃12,1(x) + |a|2g̃22.

Since the differential at x of the change of coordinates between (ξ1, ξ2) and (z1, z2) is the identity, we
have that

g̃ij,k(x) =
∂g̃ij
∂ξk

(x) =
∂νij
∂ξk

(x), g̃ij,kl(x) =
∂2g̃ij

∂ξl∂ξk
(x) =

∂2νij

∂ξl∂ξk
(x).

From this fact, and |a| = | − (g̃22(x))−1g̃12,1(x)| ≤ |g̃12,1(x)| we get that |ĝ11,11(x)| ≤ C. Similarly, when
(i, j, k, l) 6= (1, 1, 1, 1) we have |gij,kl(x)| = |ĝij,kl(x)| ≤ C, and the claim follows.

Claim 6
T2 ≤ C + (β − 1)2|z1|2β−4|v1|2|w1|2.
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Define a non-negative bilinear Hermitian form on tensors a = [aijk] satisfying aijk = akji by

〈[aijk], [bpqr]〉 =
∑

gqj(x)(wiaijkvk)(wpbpqr)vr).

Then

T2 = ‖D + E‖2

with Dijk = ĝij,k and Eijk = (β−1)|z1|2β−4z1 if (ijk) = (111) and Eijk = 0 otherwise. We first estimate

‖E‖2 = (β − 1)2|z1|4β−6g11(x)|v1|2|w1|2,

where g11 = det(g)−1g22.

det(g) = (|z1|2β−2 + ĝ11)ĝ22 − |ĝ12|
2 = ĝ22|z1|

2β−2 (1 + (ĝ22)−1 det(ĝ)|z1|2−2β
)
.

Unwinding notation we have that at the point x, ĝ22 = 1+εν22(x) and det(ĝ)(x) = εν11(x)+ε2 det(ν)(x).
We conclude that (ĝ22)−1 det(ĝ) ≥ Q−1ε, so

g11(x) ≤ (1 + δ)−1|z1|2−2β

with δ = Q−1ε|z1|2−2β . We get

‖E‖2 ≤ (1 + δ)−1(β − 1)2|z1|2β−4|v1|2|w1|2.

Next we do a trick

‖T2‖2 ≤ (1 + δ−1)‖D‖2 + (1 + δ)‖E‖2.

The claim (and the lemma) will follow if we can bound ε−1|z1|2β−2‖D‖2.

‖D‖2 =

2∑
s,t,i,j,k,l=1

gst(x)ĝit,k(x)ĝsj,l(x)vivjwkwl =

2∑
i,j,k,l=1

g11(x)ĝi1,k(x)ĝ1j,l(x)vivjwkwl.

(The second equality follows from the first claim.) Since g11(x) ≤ |z1|2−2β and |ĝij,k(x)| ≤ Cε, the
estimate follows.

�

3.4 The Sobolev inequality

Recall that the Sobolev inequality says that there exists a constant C such that for every smooth function
φ in R4 with compact support, we have(∫

R4

|φ|4
)1/2

≤ C
∫
R4

|∇φ|2. (3.27)

Let g be a Riemannian metric on R4. We can ask about inequality 3.27, for some constant C, if we replace
the euclidean measure by the measure defined by g and the euclidean gradient by the gradient with respect
to g. It is clear that 3.27 holds if g is quasi-isometric to the euclidean metric, i.e. Λ−1g ≤ geuc ≤ Λg for
some constant Λ > 0. Consider now the case of the Flat metric gF on C2 \L given by Proposition 1. We
claim that there exists a diffeomorphism Φ of C2 \L such that Λ−1geuc ≤ Φ∗gF ≤ Λgeuc for some Λ > 0.
This is indeed clear from the construction of gF : The spherical metric with cone singularities on CP1 is,
up to a diffeomorphism, quasi-isometric to the round metric and the same is true for the singular metric
g on the three-sphere; finally, the euclidean metric on R4 is the cone over the round three sphere of radius
one. We conclude that the Sobolev inequality 3.27 holds for gF . Here we remark that we have established
the inequality for compactly supported functions φ which are smooth in cone coordinates. This means
that φ is a smooth function of ρeiθ, z2; whenever z1 = ρ1/βeiθ, z2 are holomorphic coordinates around
a point of L \ {0} such that L = {z1 = 0}. Consider now our reference metric ω, given by Lemma 8.
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We claim that there exists a diffeomorphism Ψ of C2 \ C such that Λ−1ωeuc ≤ Ψ∗ω ≤ Λωeuc for some
Λ > 0. Indeed Φ◦H will do the job outside a compact set. It is easy to patch this with a diffeomorphism
supported in a tubular neighborhood of the curve, modeled on ρeiθ → ρ1/βeiθ in transverse directions to
C. The claim follows. As a result of the discussion we have the following

Proposition 3 There exists a constant C such that the Sobolev inequality 3.27 holds for the reference
metric ω and all functions φ with compact support, smooth in cone coordinates.

4 Linear analysis

In this section we define Banach spaces of continuous functions on C2 in which the Laplacian of the
reference metric ω acts as a Fredholm operator. The main result is Proposition 5. Our references
are Pacard’s notes [28], Bartnik’s article [4] and Chapter 8 in Szekelyhidi’s book [31]. To set up the
corresponding linear theory for ALE metrics, Joyce [21] invokes the explicit expression of the Green’s
function of the euclidean space. We avoid those arguments by means of some others conventional methods
used in the study of AC manifolds. In a few words we can say that, provided we know the interior
Schauder estimates (Theorem 7), the standard techniques used to establish the linear theory for AC
manifolds work in our setting.

4.1 Interior Schauder estimates

This subsection is a review of material in [15]. The main point is to state, without a proof, Theorem 7.
We also recall the definition of a metric with a cone singularity.

Consider the singular metric g(β) = β2|z1|2β−2|dz1|2 + |dz2|2 on C2. We want to define Hölder

continuous (1, 0) and (1, 1) forms. Note that under the map z1 = r
1/β
1 eiθ1 we have g(β) = dr21 +β2r21dθ

2
1 +

|dz2|2. Set ε = dr1 + iβr1dθ1. A (1, 0) form η is called Cα if η = f1ε + f2dw with f1, f2 C
α functions

in the usual sense in the cone coordinates (r1e
iθ1 , z2). It is also required that f1 = 0 on {z1 = 0}. If we

change ε by ε̃ = eiθε = β|z1|β−1dz1, say, in the definition; then the vanishing condition implies that we
get the same space. In order to define Cα (1, 1) forms we use the basis {εε, εdw, dwε, dwdw}, as above
we ask the components to be Cα functions and we require the components corresponding to εdw, dwε to
vanish on the singular set. Finally we set C2,α to be the space of Cα functions u such that ∂u, ∂∂u are
Cα. We define the Cα norm of a function ‖f‖α as the sum of its C0 norm ‖f‖0 and its Cα semi-norm
[f ]α; in the cone coordinates this last semi-norm agrees with the standard

[f ]α = sup
x,y

|f(x)− f(y)|
|x− y|α

.

To define the C2,α norm of a function f we simply add ‖f‖α, the Cα norm of the components of ∂f in
the basis {ε, dw} and the Cα norm of the components of i∂∂f in the basis {εε, εdw, dwε, dwdw}.

We are interested in the equation 4u = f , where 4 is the Laplace operator of g(β). We define L2
1

on domains of C2 by means of the usual norm ‖u‖L2
1

=
∫
|∇u|2 +

∫
u2. In the coordinates (r1e

iθ1 , z2),

β2geuc ≤ g(β) ≤ (1+β2)geuc, , so that L2
1 coincides with the standard Sobolev space in these coordinates.

Let u be a function that is locally in L2
1. We say that u is a weak solution of 4u = f if∫
〈∇u,∇φ〉 = −

∫
fφ

for all smooth compactly supported φ.

Theorem 7 [15]. Fix α < β−1 − 1 , then there exists a constant C such that if u is a weak solution of
4u = f on B2 and f ∈ Cα(B2) then u ∈ C2,α(B1) and

‖u‖C2,α(B1) ≤ C
(
‖f‖Cα(B2) + ‖u‖C0(B2)

)
. (4.1)

We mention 3 differences between Theorem 7 and the standard Schauder estimates

• We don’t have estimates for all the second derivatives of u. (E.g. ∂2u/∂r21).
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• If 4u ∈ Cα; then the component of ∂u corresponding to ε needs to vanish along the singular set.

• The estimates require α < β−1 − 1.

There is a geometric explanation for the second point. The metric g(β) has non trivial holonomy. If
γ is a simple loop around the singular set then parallel transport along γ is a rotation of angle 2π(1−β)
on the Cβ factor and it is the identity on the C factor. If u is a function with bounded Hessian then the
component of its gradient along the Cβ factor must vanish; because parallel transport of the gradient of
u along small loops around the singular set that shrink to a point must leave the gradient unchanged in
the limit.

More technically, the three points can be explained by the fact that if p is a point outside the singular
set and Γp = G(., p) , where G is the Green’s function for 4; then around points of {z1 = 0} one can
write a convergent series expansion

Γp =
∑
j,k≥0

aj,k(z2)r
(k/β)+2j
1 cos(kθ1) (4.2)

with aj,k smooth functions. The proof of Proposition 7 given in [15] uses classical methods. The
expression 4.2 is proved by separation of variables and a check of convergence. The coefficients aj,k are
given in terms of Bessel functions. If u is a function with compact support such that 4u = f , then

u(x) =

∫
G(x, y)f(y)dy. (4.3)

To show the estimate 4.1 one has to differentiate 4.3 twice. The proof then follows the one of the standard
Scahuder estimates. There are modifications due to the fact that 4 is not translation invariant.

We move on to give the definition of a metric with cone singularities. But first let η be a (1, 1)
form on B2 with ‖η‖Cα(B2) ≤ ε. Assume that η has support contained in B1 and consider the operator

Lu = 4u+ 〈∂∂u, η〉. If ε < 1/(2C) we can use 4.1 to get the estimate

‖u‖C2,α(B1) ≤ 2C
(
‖Lu‖Cα(B2) + ‖u‖C0(B2)

)
(4.4)

for all functions u ∈ C2,α(B2). Now let C be our smooth curve in C2 and let ω be a (smooth) Kähler
metric in the complement of C. We say that ω is a metric with cone singularities along C of angle 2πβ
if around each p ∈ C we can find holomorphic coordinates (z1, z2) such that

ω = ω(β) + η (4.5)

with η ∈ Cα and η(p) = 0. More precisely, η(p) = 0 means that the coefficients of η in the basis
{εε, εdw, dwε, dwdw} vanish at p. This agrees with the Definition 1 given in the Introduction, as follows
from the first remark after Definition 1.

Given our curve C and a bounded open subset U of C2 we can define the space C2,α(U) by taking
a finite cover of U with coordinates in which C = {z1 = 0}. Let p ∈ C and write ω as in 4.5. After
a dilation and multiplying by a cut-off function we can assume that in a smaller neighborhood of p we
have 4ω = L with L as in 4.4. From here we get that

‖u‖C2,α(U) ≤ C
(
‖4ωu‖Cα(V ) + ‖u‖C0(V )

)
(4.6)

for all u ∈ C2,α(V ). In 4.6 we assume that U is compactly contained in V . The constant C depends on
ω,U, V .

Finally let us say that the metrics we have constructed in the previous section have cone singularities
in the sense of 4.5 because of the following

Lemma 12 Let ω be a Kähler metric on C2 \ C such that around each p ∈ C we can find holomorphic
coordinates (z1, z2) such that

ω = Ω + i∂∂(F |z1|2β)

with Ω a smooth (1, 1) form such that Ω(∂/∂z2, ∂/∂z2)(p) > 0 and F a smooth positive function. Then
ω has cone singularities in the sense of 4.5.
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Proof: This follows from the computation

i∂∂(F |z1|2β) = |z1|2βi∂∂F + β|z1|2β−2
(
z1idz1∂F + z1∂Fdz1

)
+ β2F |z1|2β−2idz1dz1.

Set z̃1 = az1, z̃2 = bz2 with a = F (p)1/2 and b = (Ω(∂/∂z2, ∂/∂z2)(p))
1/2

to get 4.5
�

4.2 Weighted Hölder spaces

Now we begin to work in a direction adapted to our needs. We introduce weights to the previous Hölder
spaces. In this subsection we work with the flat metrics gF from Section 2. The property we shall exploit
the most is the one of being a metric cone. If γ is the weight parameter in our space of functions, then
a function in the space is bounded by rγ . In particular, if γ < 0, we allow our functions to blow up at
the apex of the cone.

Let gF be the flat metric. Write BR = {r < R} for the metric ball of radius R around the origin.
Consider the annulus A1 = B2 \ B1 and the bigger one Ã1 = B4 \ B1/2 . We know that around each
p ∈ L ∩ A1 we can find coordinates (z1, z2) in which gF = g(β) and that gF is locally isometric to the
euclidean metric outside L. We fix a finite cover of A1 by such coordinates and define the spaces Cα(A1)
and C2,α(A1) in the obvious way . Alternatively (in more intrinsic terms) we can define the space Cα

functions in any domain by considering the distance induced by gF and applying the standard definition.
To measure the C2,α norm of a function we can take an orthonormal basis for the (1, 0) forms {τ1, τ2}, for
example by applying Gram-Schmidt to {dz, dw} over A1 \ L, and sum the Cα norm of the components
of ∂u and ∂∂u with respect to τi and τiτj respectively. It follows from the first bullet after Definition 1

that this is independent of the choice of orthonormal basis {τ1, τ2}. One can replace A1 with Ã1 in the
above discussion without any change. It follows from the standard Schauder estimates and Theorem 7
that there is a constant C such that for every u ∈ C2,α(Ã1)

‖u‖C2,α(A1) ≤ C
(
‖f‖Cα(Ã1)

+ ‖u‖C0(Ã1)

)
, (4.7)

where 4u = f is the Laplacian of u with respect to gF .
Let γ ∈ R, we want to define the space Cαγ . For λ > 0, denote Aλ = B2λ \ Bλ. In other words

Aλ = Dλ(A1) where Dλ is the map given in spherical coordinates by Dλ(r, θ) = (λr, θ). Note that in
complex coordinates Dλ(z, w) = (λ2/cz, λ2/cw). Let f be a continuous function on C2 \ {0} . Define
fλ,γ = λ−γ .(f ◦Dλ) and think of it as a function on A1. Finally we set

‖f‖α,γ = sup
λ>0
‖fλ,γ‖Cα(A1). (4.8)

It follows that if f ∈ Cαγ (the space of functions in C2 \ {0} for which the above norm is finite), then
|f(x)| ≤ Ar(x)γ for some constant A. In fact, if we let ‖f‖0,γ = supλ>0 ‖fλ,γ‖C0(A1) we clearly have
‖f‖0,γ ≤ ‖f‖α,γ and ‖f‖0,γ is easily seen to be equivalent to supx r(x)−γ |f(x)|. It is clear that if we use

Ã1 instead we would get an equivalent norm, i.e, there exist a constant C such that

sup
λ>0
‖fλ,γ‖Cα(Ã1)

≤ C‖f‖α,γ .

Having said what is the space C2,α on A1 we can define the space C2,α
δ to be the space of functions u

on C2 \ {0} for which

‖u‖2,α,δ = sup
λ>0
‖uλ,δ‖C2,α(A1) (4.9)

is finite. As above δ is any fixed real number.
With these definitions we claim that 4 defines a bounded operator from C2,α

δ to Cαδ−2. Indeed, from
the expression

4 =
∂2

∂r2
+

3

r

∂

∂r
+

1

r2
4g, (4.10)
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we get that 4uλ = λ2(4u)λ. We denote uλ = u ◦Dλ. Now take u ∈ C2,α
δ , write 4u = f and let λ > 0.

Then

fλ,δ−2 = λ−δ+2(4u)λ = λ−δ4uλ
and our claim follows from the fact that 4 : C2,α(A1)→ Cα(A1) is a bounded operator.

Let us give an equivalent norm in C2,α
δ which will make evident the fact that if u belongs to this

space then |∂∂u|gF = O(rδ−2). In order to do this we note that on C2 \ L we have an (up to a factor of√
2) orthonormal basis (w.r.t. gF ) of the (1, 0) forms given by {τ1, τ2} (see 2.20) such that D∗λτi = λτi.

Given a function u we write ∂u =
∑
i uiτi and ∂∂u =

∑
i,j uijτiτj . We claim that

‖u‖2,α,δ = ‖u‖0,δ +
∑
i

‖ui‖α,δ−1 +
∑
i,j

‖uij‖α,δ−2 (4.11)

defines an equivalent norm as the previous one. (Our claim justifies the abuse of notation since 4.11
is not exactly equal to 4.9). Since 4u = u11 + u22 we see again that 4 : C2,α

δ → Cαδ−2 is a bounded
map. We compute ‖uλ,δ‖C2,α(A1) using the basis {τ1, τ2}. Since Dλ is holomorphic we have that ∂uλ =

D∗λ∂u = λ
∑
i(ui)λτi and that ∂∂uλ = D∗λ∂∂u = λ2

∑
i,j(uij)λτiτj . Our claim then follows from

‖uλ,δ‖C2,α(A1) = ‖λ−δuλ‖C0(A1) +
∑
i

‖λ−δ+1(ui)λ‖Cα(A1) +
∑
i,j

‖λ−δ+2(uij)λ‖Cα(A1).

In arguments in which the Hölder exponent α is not crucially needed we will say that a function is in
C2 if the components uij are continuous. Similarly we can give a definition of C2

δ .
We are now ready to state our first main estimate

Lemma 13 Let α < β−1 − 1 and δ ∈ R. Then there is a constant C = C(α, δ) such that for every
u ∈ C2,α

δ with 4u = f
‖u‖2,α,δ ≤ C (‖f‖α,δ−2 + ‖u‖0,δ) .

Proof: Write δ = γ + 2. Let λ > 0 we apply the interior estimate 4.7 to uλ,δ = λ−δuλ to get

‖uλ,δ‖C2,α(A1) ≤ C
(
‖λ−δ+2fλ‖Cα(Ã1)

+ ‖λ−δuλ‖C0(Ã1)

)
.

Note that the first term on the r.h.s. is bounded by ‖f‖α,γ and the second term is bounded by ‖u‖0,γ+2.
�

Remark 4 In fact we have proved that if u is locally in C2,α, 4u ∈ Cαδ−2 and ‖u‖0,δ is finite, then

u ∈ C2,α
δ and the above estimate holds.

Our next goal is to bound ‖u‖0,δ in terms of ‖f‖α,δ−2. It turns out that this is true, except when δ
belongs to the discrete set of ‘Indicial Roots’. In order to explain what is this set we digress a little and
discuss some basics of spectral theory for 4g, the Laplacian of the singular metric on the 3-sphere.

First we note that on (S3, g) there is an obvious definition of the spaces L2 and L2
1. Since there is a

diffeomorphism χ of S3 \L such that χ∗g is quasi-isometric to a smooth metric on S3 we see that L2 and
L2
1 correspond under χ to the usual spaces. In particular we have that L2

1 ⊂ L2 is compact. If we write
the norms as ‖f‖2L2 =

∫
f2 and ‖u‖2

L2
1

=
∫
u2 +

∫
|∇u|2 we see that f ∈ L2 defines a bounded linear

functional T on L2
1 by T (φ) =

∫
fφ. If u is such that T = 〈u,−〉L2

1
then u is said to be a weak solution

of −4gu+u = f . The map K(f) = u is a bounded linear map between L2 and L2
1, composing this map

with the compact inclusion we have a map K : L2 → L2 which is compact and self-adjoint. It follows
from the spectral theorem that we can find an orthonormal basis {φi}i≥0 of L2 such that K(φi) = siφi
and si → 0. Unwinding the definitions we get that 4gφi = −λiφi with 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . and
λi = (1− si)/si →∞. For each λi define δ±i to be the solutions of {s(s+ 2) = λi} with δ+i non-negative
and δ−i non-positive (in fact ≤ −2). The set of Indicial Roots is set to be I = {δ±i , i ≥ 0}. With this
definition we can state the following

Lemma 14 Let u ∈ C2
δ be such that 4u = 0 and δ /∈ I. Then u = 0.
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Proof: Write u(r, θ) =
∑∞
i=0 ui(r)φi(θ), where ui(r) =

∫
S3 u(r, .)φi. It follows from Hölder’s inequality

that if |u| ≤ Crδ then |ui(r)| ≤ C(Vol(g))1/2rδ. On the other hand the equation 4u = 0 implies

u′′i +
3

r
u′i −

λi
r2
ui = 0,

so that ui = Arδ
+
i +Brδ

−
i for some constants A and B. Since δ 6= δ±i we get that ui = 0.

�

Proposition 4 Let α < β−1 − 1 and δ ∈ R \ I. Then there exist C = C(α, δ) such that

‖u‖2,α,δ ≤ C‖f‖α,δ−2 (4.12)

for every u ∈ C2,α
δ with 4u = f .

Proof: If the result was not true then we would be able to take a sequence {uk} with ‖uk‖2,α,δ = 1 ,
4uk = fk and ‖fk‖α,δ−2 → 0. It follows from Lemma 13 that ‖uk‖0,δ ≥ 2ε for some ε > 0. Hence we can
find xk such that r(xk)−δ|uk(xk)| ≥ ε. Consider the sequence ũk = (uk)Lk,δ where Lk = r(xk). Write

xk = (r(xk), θk), then |ũk(x̃k)| ≥ ε with x̃k = (1, θk). On the other hand f̃k = 4ũk = L−δ+2
k (fk)Lk =

(fk)Lk,γ . (Where γ = δ − 2). The key point is that ‖u‖2,α,δ = ‖uL,δ‖2,α,δ and ‖f‖α,γ = ‖fL,γ‖α,γ for

any L > 0 and f, g any functions. So that ‖ũk‖2,α,δ = 1 and ‖f̃k‖α,δ−2 → 0. Let Kn = Bn \ B1/n for n

an integer ≥ 2. Arzela-Ascoli and the bound ‖ũk‖2,α,δ = 1 imply that we can take a subsequence ũk
(n)

which converges in C2(Kn) to some function un such that 4un = 0. The diagonal subsequence ũn
(n)

converges to a function u in C2 \ {0} which is in C2
δ and 4u = 0. Since |ũk(x̃k)| ≥ ε we see that u 6= 0,

but this contradicts Lemma 14
�

In practice we will only use the estimate 4.12 for functions u with support outside B1. For these
functions we can give another equivalent definition of the norms 4.8 and 4.9. Slightly abusing notation
let us set

‖f‖α,γ = ‖f‖0,γ + [f ]α,γ−α (4.13)

for functions f with supp(f) ⊂ Bc1 , where

[f ]α,γ−α = sup
x,y

min{r(x), r(y)}−γ+α |f(x)− f(y)|
d(x, y)α

when γ < 0. (If γ > 0 we replace min{r(x), r(y)} by max{r(x), r(y)} .)

Claim 7 4.8 and 4.13 define equivalent norms

Proof: We prove that 4.13 is bounded by a constant times 4.8. Consider the case of γ < 0. Take x, y ∈ C2

with r(x) ≤ r(y) such that

(1/2)[f ]α,γ−α ≤ r(x)−γ+α
|f(x)− f(y)|
d(x, y)α

.

Assume first that r(y) ≥ (5/4)r(x), say. Then d(x, y) ≥ d(y, 0)− d(x, 0) ≥ (1/4)r(x), so that

(1/2)[f ]α,γ−α ≤ r(x)−γ |f(x)|+ r(x)−γ |f(y)|.

When γ < 0, r(x)−γ |f(y)| ≤ r(y)−γ |f(y)| and this last term is bounded by 4.8. When r(y) ≤ (5/4)r(x)

we write x = (r(x), θ) and y = (r(y), ψ). Let x̃ = (3/2, θ) and ỹ = ( 3r(y)
2r(x) , ψ). Set λ = (2/3)r(x) so that

Dλ(x̃) = x and Dλ(ỹ) = y. Note that x̃, ỹ ∈ A1 (r(ỹ) ≤ 15/8 < 2), so that 4.8 gives us a bound for

λ−γ
|f(x)− f(y)|
d(x̃, ỹ)α

= (2/3)−γr(x)−γ+α
|f(x)− f(y)|
d(x, y)α

.

From this we get that 4.13 is bounded by a constant times 4.8. The reverse inequality follows similarly.
�
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Putting 4.13 and 4.11 together we get that the norm 4.9 we defined is equivalent (for functions u
with supp(u) ⊂ Bc1) to the commonly used [21] [12].

Finally let us point out that (−2, 0) ∩ I = φ independently of g. In fact, for this range one can give
an alternative proof of 4.12 which does not use the spectrum of 4g.

Lemma 15 Let u ∈ C2 with supp(u) ⊂ Bc1. Assume 4u = f ∈ C0
δ−2 for some δ ∈ (−2, 0) and that

u ∈ C0
µ for some µ < 0. Then

‖u‖0,δ ≤ cδ‖f‖0,δ−2
with cδ = −(δ + 2)−1δ−1.

Proof: From 4.10 we have that 4rδ = (δ + 2)δrδ−2 = −Qδrδ−2 with Qδ = −(δ + 2)δ > 0. On
UR = BR \ B1 consider the function h = u − Arδ −mR where mR = sup∂BR u and A = ‖f‖0,δ−2/Qδ.
Then

4h = f + ‖f‖0,δ−2rδ−2 ≥ 0.

h ≤ 0 on ∂B1 since u has support outside B1. By our choice of mR, h ≤ 0 on ∂BR . The maximum
principle implies that h ≤ 0 in UR, i.e. for every x ∈ UR we have that

u(x) ≤ (‖f‖0,δ−2/Qδ)r(x)δ +mR.

Since u ∈ C0
µ for some µ < 0 we get that limR→∞mR = 0. We let R → ∞ and get the desired upper

bound on u. The lower bound, and hence the lemma, follows by applying the upper bound to −u. �

Let us explain how one can use the maximum principle in the context of metrics with cone singular-
ities. Let A = BR2 \BR1 ⊂ C2 \ {0}. Let h ∈ C2(A) be such that 4h ≥ 0 and h|∂A ≤ 0. We claim that
h ≤ 0 on A, if this was not the case we can find p ∈ A such that h(p) = supA h = 2m > 0. If p /∈ L this
would contradict the usual maximum principle. Then p ∈ L. Let ε < β and δ be small enough such that
δ|Pd|2ε ≤ m on ∂A. Consider the function H = h+ δ|Pd|2ε. By our choices H has a local maximum at
some point q ∈ A. Since i∂∂|Pd|2ε ≥ 0 we still have 4H ≥ 0. Since ε < β and h is a C1 function, we
have that q /∈ L, contradicting the usual maximum principle. In fact this argument can be adapted to
other situations. For example the same holds if h is Cα, smooth outside L with 4h ≥ 0 (one then needs
to take ε < αβ).

4.3 Main result

In this subsection we study the mapping properties (between weighted spaces) of the Laplacian of a
metric ω with cone singularities along C asymptotic to ωF . We fix ω given by Lemma 8.

We want to define our weighted Hölder spaces. The notation is the one of Subsection 3.1. Fix N large
enough such that C ∩BcN ⊂ U2R,δ/2. Let χ be a smooth function equal to 1 on BcN+1 which vanishes on
BN . For a function u : C2 → R we write u∞ = χu ◦ G. We change notation and introduce a ′ on the
norms of the previous subsection. The space C2,α

δ ( Cαγ ) is defined to be the set of functions u (f) such
that the norm

‖u‖2,α,δ = ‖u‖C2,α(BN+1) + ‖u∞‖′2,α,δ (4.14)

‖f‖α,γ = ‖f‖Cα(BN+1) + ‖f∞‖′α,γ (4.15)

is finite. The fact is that these are Banach spaces.
Write 4 for the Laplacian of ω. We apply the estimates of the previous two subsections to get the

following

Corollary 1 Let δ /∈ I and α < β−1 − 1. Then there exist a compact set K and a constant C such that
for all u ∈ C2,α

δ with 4u = f we have

‖u‖2,α,δ ≤ C
(
‖u‖C0(K) + ‖f‖α,δ−2

)
. (4.16)
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Proof: The key point is that if v ∈ (C2,α
δ )′ with support on BcL,

‖4G∗gv −4F v‖′α,δ−2 ≤ cL‖v‖′2,α,δ (4.17)

with cL → 0 as L → ∞, where g is the metric corresponding to ω and 4F is the Laplacian of the flat
metric. Since G∗g = gF in a region Uδ′,R′ and |G∗g− gF |gF = O(rµ) for some µ < 0 with derivatives on
the complement of Uδ′,R′ , 4.17 holds. The corollary then follows from 4.12 and the interior estimates.

�

Lemma 16 4 : C2,α
δ → Cαδ−2 has finite dimensional kernel for any δ and closed image when δ /∈ I.

Proof: Let us start by proving the statement about the kernel. Assume first that δ /∈ I and let uk ∈ C2,α
δ

with 4uk = 0 and ‖uk‖2,α,δ = 1. By Arzela-Ascoli we can take a subsequence which converges in
C0(K) to some function. We apply the estimate 4.16 to conclude that the subsequence is Cauchy in
C2,α
δ and hence ker(4) is finite dimensional. In the case that δ ∈ I just take δ̃ > δ, δ̃ /∈ I and note that

C2,α
δ ⊂ C2,α

δ̃
.

To prove that the image is closed let us write C2,α
δ = V ⊕ ker(4) for some closed subspace V . We

claim that there exist a constant C such that ‖u‖2,α,δ ≤ C‖f‖α,δ−2 for every u ∈ V . If this was not true
then we would get a sequence such that ‖uk‖2,α,δ = 1 and ‖fk‖α,δ−2 → 0. It follows from Arzela-Ascoli

and 4.16 that, after taking a subsequence, we can assume that uk converges in C2,α
δ to some function u

with 4u = 0. Since u ∈ V then u = 0 and this contradicts ‖uk‖2,α,δ = 1. Finally let fk = 4uk with
fk → f in Cαδ−2. We can assume that uk ∈ V . The estimate we just proved implies that {uk} is Cauchy

and converges to some u ∈ C2,α
δ with 4u = f .

�

Let H be the the completion of the space of compactly supported functions φ, smooth in the cone
coordinates, under the Dirichlet norm

∫
|∇φ|2. (In a more precise notation we should write

∫
C2 |∇ωφ|ω2).

We recall the content of Subsection 3.4 in the form of the following

Lemma 17 (Sobolev inequality.) There exists C such that(∫
|φ|4

)1/2

≤ C
∫
|∇φ|2 (4.18)

for every φ ∈ H.

Proof: This follows since we can find a diffeomorphism of C2 \C under which ω is quasi-isometric to the
euclidean metric. �

Let f ∈ L4/3. It follows from 4.18 that Tf (φ) =
∫
fφ defines a bounded functional on H. A weak

solution of 4u = f is a function u ∈ H such that −
∫
〈∇u,∇φ〉 =

∫
fφ for every φ ∈ H. It follows from

Theorem 7 that if f is locally in Cα then u is locally in C2,α.

Lemma 18 Let f ∈ Cαc and u ∈ H be a weak solution of 4u = f . Then u ∈ C2,α
δ for any δ > −2

Proof: Take ψ = ψ(t) to be a smooth non-decreasing function of one real variable with ψ(t) = t when
t ≥ 2 and ψ(t) = 1 when t ≤ 1. Define ρ = ψ ◦ r and let

‖u‖2L2
δ

=

∫
|u|2ρ−2δρ−4.

Since u ∈ H we get that
∫
|u|4 is finite (in fact it is bounded by ‖f‖L4/3). From Hölder’s inequality we

have that

‖u‖2L2
δ
≤
(∫
|u|4
)1/2(∫

ρ−4(δ+2)

)1/2

.

If δ > −1 we conclude that ‖u‖L2
δ

is finite.

In the interior Schauder estimates one can replace the C0 norm in the r.h.s by the L2 norm. Using
the interior estimates in this form one gets that if u is locally in C2,α and ‖u‖L2

δ
is finite, then u ∈ C2,α

δ

and
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‖u‖2,α,δ ≤ C
(
‖f‖α,δ−2 + ‖u‖L2

δ

)
.

Hence u ∈ C0
δ for any δ > −1. One can then use Lemma 15 to show that in fact this is true for any

δ > −2.
�

Proposition 5 4 : C2,α
δ → Cαδ−2 is an isomorphism when δ ∈ (−2, 0) and is surjective when δ ∈

(0, 2) \ I.

Proof: The fact that 4 is injective when δ < 0 follows from the maximum principle or by integration
by parts. The key is to prove that the map is onto. By lemma 16 it is enough to prove that the image
is dense. We know from lemma 18 that the space of Cα functions with compact support is contained in
the image, one detail is that this space is not dense in Cαδ−2. But this can be overcome as follows: Take

f ∈ Cαδ−2 and δ < δ̃ < 2 with [δ, δ̃] ∩ I = φ . Let hn be a sequence of smooth cut-off functions with
hn = 1 on Bn and hn = 0 on Bcn+1. The sequence of functions fn = hnf → f in Cα

δ̃−2 so that we can

find u ∈ C2,α

δ̃
with 4u = f . It follows from the proof of lemma 16 that we can take u ∈ C2,α

δ′ for any

δ′ ∈ (δ, δ̃] and with ‖u‖2,α,δ′ ≤ C‖f‖α,δ with C independent of δ′. By taking the limit as δ′ → δ we get

that u ∈ C2,α
δ

�

Remark 5 Let ωu = ω + i∂∂u be a Kähler metric on C2 \ C with u ∈ C2,α
δ for some δ < 2. Then

Proposition 5 holds for the Laplacian of ωu.

Finally we mention some properties of these weighted spaces that will be useful to us later.

• Multiplication gives a bounded map

Cαγ1 × C
α
γ2 → Cαγ1+γ2

• Let {fj}∞j=1 ⊂ Cαγ with ‖fj‖α,γ ≤ C for some constant C. Then, after taking a subsequence, we
can assume that fj → f uniformly in compact subsets to some function f . Moreover f ∈ Cαγ and
‖f‖α,γ ≤ C.

• Let f ∈ Cα̃γ̃ and α < α̃, γ̃ < γ. Then for every ε > 0 we can find h ∈ C∞c such that ‖f − h‖α,γ < ε.

4.4 Application

In this subsection we use Proposition 5 and the implicit function theorem to prove the existence of a
metric ω0 with bounded Ricci curvature. In fact ω0 is Ricci-flat outside a compact set. It is not hard to
see that the metrics ω and ωB constructed in Section 3 have unbounded Ricci curvature. One can easily
adapt the proof of Proposition 6 to show that in the general setting of a compact Kähler manifold with
a smooth divisor D ⊂ X there are metrics with cone singularities along D and bounded Ricci curvature.

Proposition 6 There exists u0 ∈ C2,α
δ for some δ < 2 such that ω0 = ω + i∂∂u0 is a Kähler form on

C2 \ C with
ω2
0 = e−f0 |P |2β−2Ω ∧ Ω

and f0 ∈ C∞c .

Proof: Write
ω2 = e−f |P |2β−2Ω ∧ Ω.

We claim that there exists 0 < α̃ < β−1 − 1 and γ̃ < 0 such that f ∈ Cα̃γ̃ . The fact that f ∈ Cα̃ on
compacts subsets follows from the expression 4.5. Lemma 9 then proves the claim. (We can take any
γ̃ > −2/c .) Let 0 < α < α̃ and γ̃ < γ < 0 such that δ = γ + 2 /∈ I. Then there exist {hj}∞j=1 ⊂ C∞c
such that limj→∞ ‖f − hj‖α,γ = 0. We can assume that γ /∈ I.

Consider the bounded map F : U ⊂ C2,α
δ → Cαδ−2 defined in a neighborhood of 0 and given by
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F(u) = log
(ω + i∂∂u)2

ω2
.

So that F(0) = 0 and DF|0 = 4. By 5 and the implicit function theorem, we can solve F(u0) = f −hN
for some N >> 1. We get that

(ω + i∂∂u0)2 = ef−hNω2

and the proposition is proved with f0 = hN .
�

In Proposition 6 the function f0 is smooth with respect to the complex coordinates. One can use the

same proof, with the obvious modification, to get a Kähler metric ω̃0 such that ω̃2
0 = e−f̃0 |P |2β−2Ω ∧Ω,

with f̃0 a compactly supported function, smooth in the cone coordinates. What will be relevant for us
in the next section is that i∂∂f0 is bounded with respect to ω0; the metric ω̃0 would do the job as well.

5 A priori estimates for the Monge-Ampere equation

Let ω0 be given by Proposition 6. Recall that

ω2
0 = e−f0 |P |2β−2Ω ∧ Ω,

with f0 ∈ C∞c . Fix 0 < α < β−1 − 1 and −2 < δ < 0. The main result of this section is the following

Proposition 7 There exists a constant C independent of t ∈ [0, 1] such that if ut ∈ C2,α
δ solves

(ω0 + i∂∂ut)
2 = etf0ω2

0 ,

then ‖ut‖2,α,δ ≤ C.

In the next subsections we derive a priori estimates on different norms of ‖ut‖ which can be stated in the
same form as Proposition 7. To avoid repetition we only state the estimate proved. We simplify notation
and write f = tf0 and u = ut. We hope that this simplified notation doesn’t cause any confusion at
the end. The set up for this section is then a smooth function with compact support f and u ∈ C2,α

δ , a
solution of

(ω0 + i∂∂u)2 = efω2
0 . (5.1)

We denote by ωu the corresponding Kähler form ω0 + i∂∂u.

5.1 C0 estimate

The goal is to prove the following

Proposition 8 ‖u‖0 ≤ C .

We follow [21] (pages 188-190). The technique is called Moser iteration. Note that u ∈ C0
δ implies that

u ∈ Lp for p large and ‖u‖0 = limp→∞ ‖u‖Lp . The proof of Proposition 8 begins with

Lemma 19 Let p > 2 with pδ + 2 < 0. Write φ = u|u|p/2−1. Then we have∫
C2

|∇φ|2ω2
0 ≤ p

∫
C2

u|u|p−2(1− ef )ω2
0 . (5.2)

Proof: This goes along the lines of Joyce’s book [21]. We have to check that the relevant integration by
parts arguments hold in our context of metrics with cone singularities. Define a 3-form η by

η = u|u|p−2i∂u ∧ (ω0 + ωu),

where ωu = ω+i∂∂u. This form is C1 on C2\C. Fix R, ε > 0 and consider the region U = BR\{|P | ≤ ε}.
By Stokes’ theorem

∫
U
dη =

∫
∂U

η. Use the equation 5.1 to get
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dη = (p− 1)|u|p−2i∂u ∧ ∂u ∧ (ω0 + ωu) + u|u|p−2(ef − 1)ω2
0 .

For R fixed we let ε→ 0. Write Cε = {|P | = ε} ∩BR. Note that limε→0 Areag0(Cε) = 0 and that |η|g0 is
bounded. We conclude that we can take U = BR and ∂U = SR. Now note that Volg0(SR) ≤ CR3 and
|η|g0 ≤ CR(p−1)δ+δ−1 on SR. The choice pδ < −2 gives limR→∞

∫
SR
η = 0 and we get

∫
C2 dη = 0. The

lemma follows from i∂u∧ ∂u∧ ω0 = |∇u|2ω2
0 , |∇φ|2 = (p2/4)|u|p−2|∇u|2 and i∂u∧ ∂u∧ ωu = Fω2

0 with
F = |∇u|2gu(ω2

u/ω
2
0) ≥ 0.

�

Now we prove Proposition 8.
Proof: The Sobolev inequality for the metric ω0 tells us(∫

C2

|φ|4ω2
0

)1/2

≤ C
∫
C2

|∇φ|2ω2
0 . (5.3)

Apply this to φ = u|u|p/2−1 and use 5.2 to get

‖u‖pL2p ≤ Cp‖u‖p−1Lp−1 . (5.4)

The next step is to estimate ‖u‖Lp1 for some p1 > 2. In order to do this we fix some p0 > 2 such that
p0δ + 2 < 0 . Use 5.2, 5.3 to get(∫

|u|2p0ω2
0

)1/2

≤ p0
∫
|1− ef ||u|p0−1ω2

0 .

Let r > 1 be given by r(p0−1) = 2p0 and q by r−1 + q−1 = 1. Let ρ be a function ≥ 1 that agrees with r
outside a compact set, as in the proof of Lemma 18. We replace |1− ef | ≤ Cργ . (With γ = δ− 2). From
the choices it follows that ‖ργ‖Lq ≤ C. Hölder’s inequality then implies that ‖u‖Lp1 ≤ C with p1 = 2p0.
Using the bound on ‖u‖Lp1 , 5.4 and an induction argument we get a uniform bound (independent of p)
on ‖u‖Lp . Finally ‖u‖C0 = limp→∞ ‖u‖Lp ≤ C. �

5.2 C2 estimate

In this subsection we prove the following

Proposition 9 C−1ω0 ≤ ωu ≤ Cω0.

To prove Proposition 9 we use the maximum principle. Our main tool is the Chern-Lu inequality (Lemma
20 below). In Yau’s proof of the Calabi conjecture, the constant C in Proposition 9 depends on a lower
bound on the bisectional curvature of a reference metric. In our case we don’t know of any reference
metric with bisectional curvature bounded from below and there might be obstructions to the existence
of one. The use of Lemma 20 allows us to overcome this problem. Our methods in this subsection are
highly inspired by Jeffres-Mazzeo-Rubinstein [20], although we use the Chern-Lu inequality in a slightly
different way than in [20].

Lemma 20 Let g and ĝ be two Kähler metrics on X such that Ric(g) ≥ −Q2ĝ and Bisec(ĝ) ≤ Q1 for
some Q1, Q2 > 0. Set φ = trg(ĝ). Then

4g log φ ≥ −Qφ, (5.5)

where Q = Q1 +Q2.

Before going to the proof we mention two points:

• Lemma 20 is a particular case of Proposition 7.1 in [20].

• There is a similar formula for 4ĝ log φ if we assume an upper bound on the Ricci curvature of ĝ
and a lower bound on the bisectional curvature of g. See Chapter 3 in [31].
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Proof: Let x ∈ X and (z1, . . . , zn) be holomorphic coordinates around x. The metrics are then given by
n by n Hermitian matrices (gij) and (ĝij). At the point x we require that (gij) is diagonal , (ĝij) is the
identity and all the first derivatives of (ĝij) vanish. The function φ is then given by

φ = trωω̂ =
∑
j,k

gjkĝjk,

where (gij) is the inverse transpose of (gij). First we compute 4gφ. At the point x we have 4gφ =∑
p g

pp∂p∂pφ, where

∂p∂pφ =
∑
j,k

(∂p∂pg
jk)ĝjk + (∂p∂pĝjk)gjk =

∑
j

∂p∂pg
jj + (∂p∂pĝjj)g

jj .

We write 4ωφ = I + II, with

I =
∑
p,j

gppgjj ĝjj,pp, II =
∑
p,j

gpp∂p∂pg
jj .

Subindices after the comma indicate differentiation. Since the coordinates are adapted to ĝ at x and the
bisectional curvature of ĝ is bounded from above by Q1; we have that for every p and j, −ĝjj,pp ≤ Q1.
It follows that

I ≥ −Q1

∑
p,j

gppgjj = −Q1φ
2. (5.6)

Since (gij) is diagonal at x, we get

II = −
∑
p,j

gpp(gjj)2gjj,pp.

Denote by R the Riemann curvature tensor of g, given by

Rijkl = −gij,kl +
∑
r,s

grsgis,kgrj,l.

We conclude that

−glq,pp = Rlqpp −
∑
r,s

grsgls,pgrq,p.

We obtain
II =

∑
j,p

gpp(gjj)2Rjjpp + P, (5.7)

where
P =

∑
p,j,r

(gjj)2grrgpp|gjr,p|2.

Note that Ricjj =
∑
p g

ppRjjpp is the Ricci curvature of g. Since Ric(g) ≥ −Q2ĝ, we bound first term
in 5.7 by ∑

j,p

gpp(gjj)2Rjjpp =
∑
j

(gjj)2Ricjj ≥ −Q2φ
2. (5.8)

Now we bring in the logarithm to get

4g log φ =
4gφ
φ
− |∇φ|

2

φ2
.

It follows from 5.6, 5.7 and 5.8 that to prove the lemma it is enough to show that |∇φ|2 ≤ φP . At the
point x we have
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|∇φ|2 =
∑
p

gpp|∂pφ|2, ∂pφ = −
∑
j

(gjj)2gjj,p.

So that

|∇φ|2 =
∑
p,j,r

gpp(gjj)2gjj,p(g
rr)2grr,p =

∑
j,r

(gjj)2(grr)2

(∑
p

gppgjj,pgrr,p

)
.

For each j and r fixed, the Cauchy-Schwarz inequality implies that

∑
p

gppgjj,pgrr,p ≤

(∑
p

gpp|gjj,p|
2

)1/2(∑
p

gpp|grr,p|2
)1/2

.

We use the Cauchy-Schwarz inequality once again to obtain

|∇φ|2 ≤

∑
j

(gjj)2

(∑
p

gpp|gjj,p|
2

)1/2
2

=

∑
j

(gjj)1/2

(∑
p

(gjj)3gpp|gjj,p|
2

)1/2
2

≤ φ

∑
j,p

(gjj)3gpp|gjj,p|
2

 ≤ φ
∑
j,r,p

(gjj)2grrgpp|gjr,p|2
 = φP.

The proof of the lemma is now complete.
�

We are now ready to prove Proposition 9.
Proof: We set g and ĝ to be the Kähler metrics corresponding to ωu and ωB , respectively. First we check
that the hypothesis of Lemma 20 hold. The upper bound on the bisectional curvature of ĝ is given by
Lemma 10. Recall that ω2

u = etf0ω2
0 , where Ric(ω0) = i∂∂f0. It follows that Ric(ωu) = (1 − t)Ric(ω0).

Since f0 is smooth we clearly have i∂∂f0 ≥ −Q2ωB for some Q2 > 0. We conclude that the bound
Ric(g) ≥ −Q2ĝ holds.

Write ωu = ωB + i∂∂v. Note that u and v differ by a fixed function. Take the trace w.r.t. ωu to
get 2 = φ +4gv. Consider the function H = log φ − Av, with A = Q + 1. We want to show that H is
bounded above by a uniform constant. Since H(y)→ log 2 as y →∞, we can assume that H attains its
global maximum at x ∈ C2. If x /∈ C, by Lemma 20 we have

0 ≥ 4gH(x) ≥ −Qφ−A4gv = φ(x)− 2A.

Proposition 8 gives us a uniform bound on the C0 norm of u and hence of v. We conclude that at the
point x the function H is bounded from above by a uniform constant. Since x is a maximum point of H
the bound holds in all of C2.

If x ∈ C we can assume H(x) ≥ log 2 + 3 and take R > 0 so that H|∂BR ≤ log 2 + 1. Fix some
0 < ε < β and consider the function H̃ = H + (1/N)|P |2ε, where N > 0 is big enough such that
(1/N)|P |2ε ≤ 1 on ∂BR. By our choices maxy∈BR H̃ = H̃(x̃) with x̃ /∈ ∂BR. Since H ∈ Cα and ε < β,
we have that x̃ /∈ C, hence

0 ≥ 4ωH̃(x̃) = 4ωH + (1/N)4ω|P |2ε ≥ 4ωH(x̃) ≥ φ(x̃)− 2A

We used that 4ω|P |2ε ≥ 0 since i∂∂|P |2ε ≥ 0. Note that H(x) ≤ H̃(x) ≤ H̃(x̃) to get the estimate.
We have proved that H is uniformly bounded from above. We use Proposition 8 once again to

conclude that φ = trg ĝ ≤ C̃. Therefore ωB ≤ C̃ωu. Since the metrics ωB and ω0 are fixed there is a

fixed constant Λ such that Λ−1ω0 ≤ ωB , hence ω0 ≤ ΛC̃ωu. Finally we use the equation ω2
u = efω2

0 to
get the desired bound C−1ω0 ≤ ωu ≤ Cω0.

�
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Figure 4: Pushing the maximum outside the curve.

5.3 C2,α estimate

In this subsection we prove the following

Proposition 10 ‖u‖2,α ≤ C.

Proposition 10 is a direct consequence of Theorem 8 below. The technique we use is known as ‘the
blow-up argument’. When β = 1, the content of Theorem 8 is well-known and is a consequence of the
so-called Evans-Krillov theory. The proof we sketch here uses different methods than the ones in that
theory and also works in the case of β = 1. This subsection does not contain any original work and
is included here for the sake of completeness. Our references are: [10], Sections 3, 4 and 5 in [11] and
the proof of Theorem 2 in [8]. We mention that in Yau’s work on the Calabi conjecture, Proposition 10
was proved by means of the maximum principle -a step known as Calabi’s third order estimate-; while
Theorem 8 is a local statement. Calabi’s third order estimate was carried over to the context of metrics
with cone singularities, under the assumption that β < 1/2, in Section 6 of [6].

We work on the space Cβ × Cn−1 with complex coordinates z1, . . . , zn. If p ∈ Cn and r > 0, we
denote by Br(x) the metric ball with center at x and radius r -in the distance induced by g(β). When
x = 0 we write Br = Br(0).

Theorem 8 Let α < α′ < β−1 − 1 and φ ∈ C2,α′(B1) be such that

K−1ω(β) ≤ i∂∂φ ≤ Kω(β)

and
det(∂∂φ) = |z1|2β−2ef .

Then there exists a constant C, which depends only only on K and the Cα norm of f in B1 such that

[i∂∂φ]α,B1/4
≤ C.

Proof: This is Theorem 1.7 in [10]. We only sketch the proof. There are three main ingredients:

• Fact 1: Let Λ > 0 and Λ−1 < r < Λ. There exists a constant C which depends only on Λ with
the following property: If η is a real closed Cα form on Br of type (1, 1), then there exists a real
function φ ∈ C2,α(Br/2) such that i∂∂φ = η on Br/2 and ‖φ‖2,α,Br/4 ≤ C‖η‖α,Br .
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• Fact 2: Let ω∞ be a Cα Kähler metric on Cn such that ωn∞ = ωn(β) and K−1ω(β) ≤ ω∞ ≤ Kω(β)

for some K > 0. Then there exists a linear transformation L, which preserves {z1 = 0}, such that
ω∞ = L∗ω(β).

• Fact 3: There is a δ > 0 such that Theorem 8 holds when K = 1 + δ.

Fact 1 is proved by analyzing the standard proof of the local ∂∂-lemma, see Section 4 in [11]. Fact
2 is proved by means of the maximum principle in Section 5 of [11]; in the case that ω∞ is known to
be a Riemannian cone see Proposition 25 in [8]. Fact 3 is proved in pages 228-229 of [8], it follows
from the interior Schauder estimates and the fact that the Laplace operator is the linearization of the
Monge-Ampere operator.

Now let us proceed with the proof of Theorem 8. We write ω = i∂∂φ. For q ∈ B1, denote by dq the
distance from q to the boundary of B1. Define the Hölder radius as the supremal of the h ∈ (0, dq) such
that [ω]α,Bh(q) ≤ δ0h

−α, where δ0 is a small positive number which depends only on K. To prove the
theorem it is enough to show that there exists a constant c0 > 0, depending only on K and ‖f‖α,B1 ,
such that hω,q/dq ≥ c0 for all q ∈ B1. We argue by contradiction and assume that there are ωk = i∂∂φk,
qk ∈ B1 such that:

K−1ω(β) ≤ ωk ≤ Kω(β), det(ωk) = |z1|2β−2efk , ‖fk‖α′,B1
≤ 1 (5.9)

hωk,qk
dqk

= εk → 0,
hωk,qk
dqk

≤ 2 inf
q∈B1

hωk,q
dq

. (5.10)

We rescale and define

ẑ1 = h−1/βωk,qk
(z1 − z1(qk)), zj = h−1ωk,qk(zj − zj(qk)) for j = 2, . . . , n.

Write this change of coordinates as x̂ = Γ̃k(x). Let Γk be the inverse of Γ̃k and consider ω̂k = h−2ωk,qkΓ∗kωk,

f̂k = Γ∗kfk. It follows that

det(ω̂k) = |ẑ1|2β−2ef̂k , hω̂k,0 = 1. (5.11)

Note that Γ̃k(Bdqk (qk)) = B1/εk(0), so that the ωk are defined on larger and larger balls. It is not hard
to show, by means of the Arzela-Ascoli theorem and a diagonal argument, that 5.9, 5.10 together with
Fact 3 and Fact 1; imply that ω̂k converges in Cα , up to a subsequence, to a Kähler metric ω̂∞ defined
on Cn as the one in Fact 2. It follows that ω̂∞ has constant coefficients, so that hω̂∞,0 = ∞. Since
ω̂k → ω̂∞ in Cα , for k large enough we get that hω̂k,0 ≥ 2 and this contradicts 5.11.

�

5.4 Weighted estimates

This subsection completes the proof of Proposition 7. Our main results are Proposition 11 and Proposi-
tion 12. Our reference is Chapter 8 in Joyce’s book [21]. Proposition 11 corresponds to Theorem 8.6.6
in [21] and Proposition 12 to Theorem 8.6.11 in [21].

The first result is a weighted version of Proposition 8. The proof uses Moser iteration and follows
the same lines as the one of 8. We fix µ such that δ < µ < 0.

Proposition 11 ‖u‖C0
µ
≤ C.

Let ψ be a smooth convex function of one real variable with ψ(t) = 1 for t ≤ 1 and ψ(t) = t for t ≥ 2.
Recall that r is the intrinsic distance in the flat metric to 0 and define ρ = ψ ◦ r. In order to prove
Proposition 11 we introduce the norm

‖u‖p
Lpµ

=

∫
C2

|u|pρ−pµρ−4ω2
0 .

Because u ∈ C0
δ and δ < µ we have that u ∈ C0

µ, u ∈ Lpµ for all p ≥ 1 and ‖u‖C0
µ

= limp→∞ ‖u‖Lpµ .
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Lemma 21 For p ≥ 2, pµ ≤ −2 we have

‖u‖p
L2p
µ
≤ Cp

(
‖u‖p−1

Lp−1
µ

+ ‖u‖p
Lpµ

)
. (5.12)

This lemma corresponds to Proposition 8.6.8 in [21]. 5.12 is a weighted version of inequality 5.4. To
prove the lemma we have to use the Sobolev inequality for the metric ω0 together with an integration
by parts argument. We refer to pages 190-192 in [21]. The only work we have to do is to check that
the relevant integration by parts hold in our context of metric with cone singularities -as we did in the
proof of Proposition 8-; this is straightforward and we omit the details. To prove Proposition 11 we note
that if p0 = (−4/µ), then ‖u‖Lp0µ = ‖u‖Lp0 and we already have a bound on this quantity. Finally, an

induction argument using 5.12 gives the desired bound on ‖u‖C0
µ
.

We move on to state our second result, Proposition 12. The proof uses the linear theory we developed
and follows the lines of pages 193-195 in [21]. We pause for a moment to touch on a technical point:
There is a mistake in the definition of the weighted Cα semi-norm given by formula 8.6, page 179 of [21].
The problem is that the semi-norm only compares points which are at distance less than the injectivity
radius. This forbids the use of the interior Schauder estimates and scaling arguments needed to establish
the linear theory, see the proof of Lemma 13. The arguments in pages 193-195 of [21] deal with this
wrong semi-norm; it is not hard to adapt the arguments to prove what we need.

Proposition 12 ‖u‖2,α,δ ≤ C

Proof: Write ω2
u = efω2

0 as i∂∂u ∧ (2ω0 + i∂∂u) = (ef − 1)ω2
0 . We get

40u = (ef − 1) + ψ, (5.13)

with ψ = u2
ij

. We could also have written

4u = H(ef − 1), (5.14)

where 4 is the Laplace operator of the metric ωu/2 = ω0 + i∂∂(u/2) and H = ω2
u/2/ω

2
0 . Since ωu/2 =

(1/2)ω0 + (1/2)ωu ≥ (1/2)ω0 and we have a bound on the C2,α norm of u, we conclude that

‖u‖C2,α(B1(x)) ≤ C
(
‖4u‖C2,α(B2(x)) + ‖u‖C0(B2(x))

)
, (5.15)

with a constant C independent of x. We multiply 5.15 by ρ(x)−µ to get

‖uij‖0,µ ≤ C, ρ(x)−µ
|uij(x)− uij(y)|

d(x, y)α
≤ C whenever d(x, y) < 1. (5.16)

Take µ < µ̃ < 0, µ̃ = µ + α such that 2µ̃ < −2. At this point we impose some restrictions on the
choices of δ, µ, µ̃. We start with −2 < δ < −1−α, then we take δ < µ < −1−α and µ̃ < −1. We claim
that 5.16 implies that ‖uij‖α,µ̃ ≤ C. In fact one only needs to consider the case of d(x, y) ≥ 1, let’s say
that ρ(x) ≤ ρ(y) and estimate

ρ(x)−µ̃+α
|uij(x)− uij(y)|

d(x, y)α
≤ ρ(x)−µ(|uij(x) + |uij(y)|) ≤ 2C.

We use 5.13 and Proposition 5 to conclude that ‖u‖2,α,2+2µ̃ ≤ C. Then ‖uij‖α,2µ̃ ≤ C, so that ‖ψ‖α,4µ̃ ≤.
Since 4µ̃ < −4 < δ − 2, we can use 5.13 and Proposition 5 again to obtain ‖u‖2,α,δ ≤ C.

�

5.5 Proof of THEOREM 1

We are ready to give the proof of our main result, THEOREM 1.
Proof: Let ω0 be the metric given by Proposition 6. Take any 0 < α < β−1− 1, δ ∈ (−2, 0) and consider
the set

T = {t ∈ [0, 1] : ∃ut ∈ C2,α
δ solving (ω0 + i∂∂ut)

2 = etf0ω2
0}. (5.17)
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Clearly 0 ∈ T , with u0 = 0. Note that if t ∈ T , then ωt = ω0 + i∂∂ut is a Kähler metric with cone angle
2πβ along C. The positivity follows from the equation, the decay of i∂∂ut and the connectedness of
C2 \C. Proposition 5 and remark 5, together with the implicit function theorem, imply that the set T is
open. Proposition 7 gives us that the set T is closed. We set ωRF = ω1. It is easy to check that ωRF has
the desired properties. It follows from this proof that we can improve the statement on the asymptotic
behavior and we can say that, outside a compact set, ωRF −H∗ωF ∈ Cαγ for any γ > max{−2/c,−4}.

�

6 Conjectural picture

6.1 Convergence theory

We review well-known material, for which our reference is Anderson’s survey [1]. The energy of a
Riemannian manifold is the quantity given by

E =
1

8π2

∫
|Rm|2.

It plays a significant role in the study of Einstein metrics on 4-manifolds. If (X4, g) is closed and Einstein,
then E is equal to the Euler characteristic of X; after Chern-Weil. A consequence of this conservation
law is that solutions to Einstein’s equations can degenerate, in the non-collapsing situation, only by
developing orbifold singularities at a finite number of points. The blow-up limits of the solutions are
Ricci-flat manifolds asymptotic to a quotient of R4 by a finite subgroup of SO(4), i.e. Ricci-flat ALE
spaces. We put these results together, in the form of the following

Theorem 9 [1]. Let (X, gi) be a sequence of Einstein metrics on a smooth four manifold X with Ricci
= ±1 or 0. Assume that the diameter is uniformly bounded from above and volume uniformly bounded
from below. Then there exist {j} ⊂ {i} a subsequence and a compact Einstein 4-orbifold (X∞, g∞) with
a finite singular set S = {x1, . . . , xk} ⊂ X∞ (possibly empty) such that

• (X, gj)→ (X∞, g∞) in the Gromov-Hausdorff sense.

• For any xa ∈ S there is a sequence xa,j ∈ X with limj→∞ xa,j = xa such that if we set rj =
|Rmgj |(xa,j); then rj →∞ and

(X, rjgj , xa,j)→ (Ma, ha, xa,∞)

in the pointed Gromov-Hausdorff sense; where (Ma, ha) is an ALE manifold, possibly with orbifold
singularities.

• Let E be the energy of (X, gj), which by Chern-Weil is independent of j. Then we have that

E ≥ E(g∞) +

k∑
a=1

E(ha). (6.1)

We make some remarks on Theorem 9: The convergence in the first two items can be strengthened to
convergence of tensors. The hyperkähler ALE spaces are well understood and classified due to Kro-
nheimer’s work [22], [23]. It is possible to get equality in 6.1 if one takes into account ‘bubble tree’
phenomena.

Consider now the case of metrics with cone singularities. Let X be a closed complex surface with a
Kähler-Einstein metric with cone angle 2πβ along a smooth complex curve C. Then, by Atiyah-LeBrun
[2] and Song-Wang [30], we know that

E = χ(X) + (β − 1)χ(C). (6.2)

This gives us some evidence that there should be a parallel to Theorem 9 in this context. The degeneration
of the curves is a new feature of the theory. In order to fix some ideas let Cε ⊂ X be a smooth complex
curve for each ε > 0, with Cε → C0 as ε → 0, where C0 is a curve in X which might be singular.
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Fix 0 < β < 1 and assume that there are Kähler-Einstein metrics gε with cone angle 2πβ along Cε,
for simplicity also assume that the Ricci curvature is a fixed positive constant. First we focus on the
case where the curves Cε develop an isolated singularity. Let p ∈ C0 and (u, v) complex coordinates
centered at p such that C0 = {Pd + (h.o.t.) = 0}, where Pd is a homogeneous degree d ≥ 2 polynomial
and h.o.t. means higher order terms. For the sake of definiteness suppose that in these coordinates
Cε = {Pd + (h.o.t.) = εQ}, where Q is a polynomial such that Q(0) = 1. Rescale the coordinates and
define u = ε1/dz, v = ε1/dw. Let C = {Pd = 1}, a smooth complex curve in C2. In the (z, w) coordinates
we have that Cε → C. Let gRF be the Ricci-flat metric with cone angle 2πβ along C given by THEOREM
1. We would expect that (under favorable conditions) after re-scaling gε around small balls centered at
p we will get the metric gRF in the limit. We give a detailed example of this situation in Subsection 6.3.
It would be interesting to extend the previous discussion to the case of convergence with multiplicity. In
this case we expect to find Ricci-flat metrics with cone singularities along a smooth complex curve whose
asymptotic lines are not necessarily different. We say more on this in Subsection 6.4. To include ‘bubble
tree’ phenomena into the discussion, one should consider the case of a general curve, not necessarily
smooth. To take account of degenerations which involve the curves and the ambient surface at the
same time one should replace C2 by a complex surface Z. The general problem would then be to study
asymptotically conical Ricci-flat Kahler metrics on a complex surface Z with cone singularities along a
complex curve C ⊂ Z.

To finish this subsection we note that there are compactness results for Kähler-Einstein metrics with
cone singularities. For example, the ones in Chen-Donaldson-Sun’s work [8]. However the main theme
in [8] is to endow the limit with an algebraic structure. It should be possible to say much more on the
differential geometric strucure of the limits in the case when the curves degenerate to a singular one or
converge to C0 with multiplicity.

6.2 Energy of the metrics

Let (M,h) be a smooth ALE manifold asymptotic to R4/Γ, where Γ is a finite subgroup of SO(4). It is
known (see [2]) that the energy of (M,h) is finite and is given by

E = χ(M)− 1

|Γ|
. (6.3)

Now let gRF be the metric in THEOREM 1. We have a formula for the energy of gRF , which is a
mixture of 6.2 and 6.3:

Proposition 13

E = 1 + (β − 1)χ(C)− Vol(g)

2π2
. (6.4)

Recall that g is the corresponding singular metric on the 3-sphere and we know that Vol(g) = (π2/2)c2

(see Remark 2). The Euler characteristic of C is χ(C) = 2 − 2g − d; where g = (d − 1)(d − 2)/2, by
the degree-genus formula. Putting these facts together we obtain a formula for E which only involves
d and β. In the case that d = 2 we can prove 6.4 by direct computation, using the Gibbons-Hawking
description of the metric. Proposition 13 follows immediately if we establish the following two items:

• Let (X, g) be a compact Kähler-Einstein surface with boundary ∂X = Y and cone singularities of
angle 2πβ along a smooth complex curve C ⊂ X. Let II be the second fundamental form of Y
in X and R̂ the restriction of the ambient curvature operator to Y , thought as a symmetric two
tensor by means of the three dimensional Hodge operator. Then the energy of g is given by

E = χ(X) + (β − 1)χ(C)− 1

2π2

∫
Y

(
det(II) + 〈II, R̂〉

)
. (6.5)

• Let X be a large ball in (C2, gRF ) of radius R. In the limit when R → ∞ we can replace the
boundary integral in 6.5 with Vol(g).

Consider the flat metric gF on C2 and let Y = SR be the set of points at distance R from the appex. Since
the ambient curvature vanishes, the integral appearing in formula 6.5 reduces to

∫
SR

det(II). Around
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each point y of SR \ L there is a neighborhood in C2 \ L which maps isometrically into R4 with the
Euclidean metric and identifies SR with the standard round three-sphere of radius R. It follows that the
integral is independent of R and

∫
SR

det(II) = Vol(g). Therefore, in order to establish the second item,
what one has to prove is that the convergence of gRF to gF as R→∞ is strong and fast enough so that
one can replace the integrals. We don’t say anymore on this item and move on to discuss the former.
From now on we take X to be a large ball in (C2, gRF ).

There are two main steps in the proof of 6.5. First we show that our Ricci-flat metric has cone
singularities in a stronger sense; at points of the curve gRF approaches the model g(β) with derivatives.
In particular this implies that the energy and the integral in formula 6.5 are finite. The second step
is to fit 6.5 into a more general setting of connections on the tangent bundle of X \ C, viewed as a
complex rank 2 vector bundle. We write 6.5 as a Chern-Weil type formula. We prove the independence
of the formula for an appropriate class of connections, which contains the Levi-Civita connection of gRF .
Finally, we construct a model connection in our class for which the relevant Chern-Weil integral can be
computed explicitly. We follow closely [17], the approach is similar to the ones in Atiyah-LeBrun [2] and
Kronheimer-Mrowka [24].

We use that gRF is Ricci-flat to improve its regularity. We appeal to Theorem 2 in [20]. Let p ∈ C
and z1, z2 holomorphic coordinates around p in which C = {z1 = 0}. Write z1 = ρ1/βeiθ. In small
neighborhood of p the metric gRF has a potential φ which has a polyhomogeneous expansion

φ ∼
∑
j,k

Njk∑
l=0

ajkl(θ, z2)ρj/β+2k(log r)l.

The functions ajkl are smooth and there are no terms of the form ra(log r)l with l > 0 and a ≤ 2. In
particular it follows that gRF is locally in Cα for α = β−1 − 1. Denote the normal bundle of the curve
by νC = TX/TC. The metric gRF induces a Hermitian metric on TX|C , equivalently it gives us the
following data:

• A Kähler metric gC on the curve. Indeed this is simply the restriction of gRF to TC.

• A smooth splitting TX = TC ⊕ νC along the curve. In other words, there is a notion of a normal
direction to the curve. See Lemma 24.

• A Hermitian metric on νC . See Lemma 23.

Let g be a Cα metric with cone angle 2πβ along C and α = β−1 − 1. Let Π : P → X denote the CP1

bundle given by the projectivisation of TX. Let U = Π−1(X \C). Since we are assuming that the metric
is smooth on the complement of the curve we have a smooth bundle map ⊥: U → U , given by taking
the orthogonal complement. The Hölder condition then gives us the following

Lemma 22 The map ⊥ has a continuous extension ⊥: P → P .

Proof: Let p ∈ C. Take z1, z2 to be holomorphic coordinates centered at p such that C = {z1 = 0}. The
metric g is represented by an Hermitian matrix

g

(
∂

∂z1
,
∂

∂z1

)
= a|z1|2β−2, g

(
∂

∂z1
,
∂

∂z2

)
= b|z1|β−1, g

(
∂

∂z2
,
∂

∂z2

)
= c.

We are assuming that the functions a, b, c are Cα and b = 0 when z1 = 0. We can scale each of the
coordinate functions and suppose that a(0) = c(0) = 1. The condition on the Hölder exponent and the
fact that b vanishes when z1 = 0 gives us that the limit

lim
q→C

gq

(
∂

∂z1
,
∂

∂z2

)
is finite. The proof of the lemma is now an easy computation, for simplicity we show the case of the
directions tangent to the curve

⊥
(
〈 ∂
∂z2
〉
)

= 〈 ∂
∂z1
− c−1g

(
∂

∂z1
,
∂

∂z2

)
∂

∂z2
〉.
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We use the notation in the proof of Lemma 24. In the coordinate chart z1, z2, the line bundle νC is

trivialized by the section
[
∂
∂z1

]
. We set

∣∣∣∣[ ∂

∂z1

]∣∣∣∣2
h

= a1/β . (6.6)

Lemma 23 6.6 defines a Cα Hermitian metric on νC .

Proof: Let z̃1, z̃2 be another coordinate system such that C = {z̃1 = 0}. Then z1 = fz̃1 for some
holomorphic non-vanishing f . Then [

∂

∂z̃1

]
= f

[
∂

∂z1

]
.

Write

g

(
∂

∂z̃1
,
∂

∂z̃1

)
= ã|z̃1|2β−2.

At the curve we have that

a|z1|2β−2|dz1|2 = a|f |2β−2|z̃1|2β−2|f |2|dz̃1|2 = ã|z̃1|2β−2|dz̃1|2.

Then ã = |f |2βa and the lemma is proved. �

In the case that g is our Ricci-flat metric, lemmas 24 and 23, indeed provide us with a smooth splitting
TX = TC ⊕ νC and a smooth Hermitian metric h. We use this data, together with the induced metric
gC , to define around points of the curve what we call adapted coordinates. This concept is parallel to
the notion of normal coordinates for smooth Kähler metrics. From now on we assume that 1/2 < β < 1,
the discussion when 0 < β ≤ 1/2 is easier.

Lemma 24 Let p ∈ C. Then there exists holomorphic coordinates z1, z2 around p such that

|g − g(β)| = O(r1/β), |∇g| = O(r1/β−1), |∇2g| = O(ρ1/β−2), (6.7)

where r2 = |z1|2β + |z2|2 and ρ = |z1|β.

It is a consequence of Lemma 24 that |Rm(g)| = O(ρ1/β−2). Since β < 1 the energy of the metric is

finite, by comparison with the integral
∫ 1

0
ρ2/β−4ρdρ. Note that h gives rise to a connection ∇v on νC .

Write s for the local section
[
∂
∂z1

]
. In adapted coordinates we have that |s|h(p) = 1, ∇vs(p) = 0 and z2

is a standard normal coordinate for gC at p. We omit the proof of 24.
Now we bring in the Chern-Weil formalism. Let ∇ be a connection on the rank 2 complex vector

bundle T (X \ C). Let z1, z2 be adapted coordinates. Consider the locally defined coordinate ξ = zβ1 .
Write Γ for the Christoffel symbols of ∇ in the coordinates ξ, z2. Write F for its curvature. We say
that ∇ is an adapted connection if for every point p ∈ C and (z1, z2) adapted coordinates centered at
p we have that |Γ| = O(r1/β−1) and |F | = O(ρ1/β−2). The Levi-Civita connection of g is an adapted
connection. In our case, since X is a ball in C2, we have a natural trivialization of the bundle T (X \C).
An adapted connection ∇ is represented by a matrix of 1-forms A. We define

I(∇) =
1

8π2

∫
X

tr(F∇ ∧ F∇)− 1

8π2

∫
Y

dA ∧A+
2

3
A ∧A ∧A. (6.8)

The second term in the r.h.s. of 6.8 can be recognized as a Chern-Simons invariant. It follows from
the definition of adapted connection that the integrals are well defined. The standard arguments of
Chern-Weil theory apply to give that, in fact, I(∇) is independent of the choice of adapted connection.
In the case that ∇ is the Levi-Civita connection of a Kähler metric g, it is a well-known fact that
tr(F∇ ∧F∇) = |Rm|2 − |Ric|2. It should be the case that the boundary integrals in formulas 6.5 and 6.8
agree. Therefore, to prove 6.5, it is enough to show that I(∇) = χ(X) + (β − 1)χ(C) for some adapted
connection. The construction of such a connection takes place in a tubular neighborhood N of the curve.
For each p ∈ C, let Vp be the affine complex line going through p which is orthogonal with respect to
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g to the curve. If N is sufficiently small Vp ∩ N is biholomorphic to the unit disc 4 ⊂ C. We have a
map j : 4 → Vp ∩N , well defined up to rotations. The derivative dj gives us an isomorphism between
C and the fiber of νC at p, νp. The composite j ◦ (dj)−1 is well defined. The collection of these maps
as p varies over C give rise to a diffeomorphism Ψ from a neighborhood of the zero section of νC to N .
The map Ψ is holomorphic when we restrict it to the fibers νp. Let V be the image under the derivative
of Ψ of the tangent spaces to the fibers of ν. Then V is a distribution of complex lines in N . The
connection ∇v induces a distribution H of horizontal subspaces in νD. Since Ψ is not holomorphic, the
image under the derivative of H don’t need to be complex subspaces of C2. However, if N is sufficiently
small, this image will lie in a tubular neighborhood of CP1 ⊂ Gr(2, 4). Then we can project to get a
distribution H of complex lines in N which agrees with TC over C. Over N we have the decomposition
TC2 = H ⊕ V . Let α be the 1-form with kernel H and which agrees, after pulled back with Ψ, with
the canonical 1-form on the fibers of νC . Let P be an endomorphism of TC2 which is zero outside N
and equal to the projection on the V component in a smaller neighborhood of C. We use the splitting
TC2 = H ⊕ V , the connection ∇v and the Levi-Civita connection of gC to get a smooth connection over
N , we can extend it to a smooth connection ∇0 on TX. Finally we define

∇ = ∇0 + (β − 1)α⊗ P.

It requires some technical work to show that ∇ is an adapted connection and we omit the details. It is
easy to check that I(∇) = χ(X) + (β − 1)χ(C). One has to use that I(∇0) = χ(X) and that dα is, up
to a constant factor, a representative of the Poincare dual of C.

6.3 Cubics in CP2

We illustrate our previous general speculations on convergence theory with an example. In CP2 with
homogeneous coordinates [x0, x1, x2] consider the family of elliptic curves

Cε = {x0x1x2 − ε(x30 + x31 + x32) = 0}.

These curves are smooth when ε > 0 and C0 is the union of three lines. Fix 0 < β < 1 as before.
It follows from the third bullet of Theorem 2 in the Introduction, that for each ε 6= 0 there exists a
Kähler metric gε on CP2 \Cε with cone angle 2πβ along Cε and constant positive Ricci curvature on the
complement of the curve, let’s say Ric(gε) = gε. Take a decreasing sequence of positive numbers εj → 0.
For different values of the parameter ε the curves Cε are different complex tori. The metrics gεj are
pairwise non-isometric. Denote by dε the distance induced by gε. It follows from Gromov’s compactness
theorem that there exist a metric space (X, d) such that (CP2, dεj ) → (X, d) in the Gromov-Hausdorff
sense, after taking a subsequence if necessary. In fact, there is a natural candidate for (X, d). The S1

action eiθ(x0, x1, x2) = (eiθx0, e
iθx1, e

iθx2) preserves the metric of (Cβ)3. Taking an appropriate Kähler
quotient we get a Kähler metric g0 on CP2 with cone angle 2πβ along C0 and Ric(g0) = g0 on the
complement of C0. When β = 1/k the metric g0 is (up to a constant factor) the push forward of the
Fubiny-Study metric under the map [x0, x1, x2]→ [xk0 , x

k
1 , x

k
2 ]. The metric g0 induces a distance d0 and

our candidate for (X, d) is (CP2, d0).
Formula 6.2 tells us that E(gε) = 3. On the other hand the energy of the metric g0 can be computed

directly (in the case when β = 1/k it is 1/k2 times the energy of the Fubini-Study metric) and is given
by E(g0) = 3β2. If our conjecture that (CP2, dεj ) → (CP2, d0) is true, then we are losing an amount of
energy equal to

E(gε)− E(g0) = 3− 3β2 = 3(1− β2). (6.9)

Let p denote any of the points [1, 0, 0], [0, 1, 0] or [0, 0, 1] and write λj = |Rm(gεj )|(p). Let gRF be
the metric in THEOREM 1 when C = {zw = 1} and write a = |Rm(gRF )|(0). We expect that λj →∞
and that (CP2, λjgεj , p)→ (C2, agRF , 0) in the pointed Gromov-Hausdorff sense. Alternatively, consider

the embedding of C2 into CP2 given by (u, v) → [u, v, 1]. In these coordinates the point p = [0, 0, 1]
corresponds to 0 and

Cε = {uv = ε(u3 + v3 + 1)}.
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Write u =
√
εz and v =

√
εw so that Cε = {zw = ε3/2z3 + ε3/2w3 + 1}. Write (u, v) = Fε(z, w). We can

omit the discussion above on convergence of metric spaces and say that we expect that |Rm(gε)|(p)F ∗ε gε →
agRF as ε → 0 in the sense of tensors. Our conjectural formula 6.4 allows us to compute the energy of
gRF . In this case C = {zw = 1}, so that χ(C) = 0. The corresponding metric on the three-sphere has
total volume 2π2β2. We get that E(gRF ) = 1−β2. The total amount of energy lost in the convergence of
the metrics gε to the metric g0 is given by 6.9. This can be explained by the formation of three bubbles
with energy 1−β2, according to our conjectural picture. (Note that E(agRF ) = E(gRF ) since the energy
is scale invariant.)

One can write many other families of smooth cubic curves in CP2 which degenerate into a singular
curve. From the point of view of the metrics, the author believes that the degeneration we have described
is the only possible one. Denote by M the space of all smooth cubics in CP2 modulo the action of
PSL(3,C), it is a classical fact that M carries a natural structure of a Riemann surface and that
M ∼= C, see Chapter 6 in [16]. Fix 0 < β < 1 and let P be the space of all Kähler-Einstein metrics in
CP2 of normalized volume with cone angle 2πβ along a smooth cubic curve, modulo isometry. Endow
P with the Gromov-Hausdorff topology. The theory of existence and uniqueness of such metrics, see
[20], establishes an homeomorphism between M and P. One can use the Gromov-Hausdorff distance to
compactify P. It should be the case that this is homeomorphic to an algebraic compactification of M.
In our case, the Riemann sphere is the only algebraic compactification of C. It is obtained by adding
only one point to M, this point should correspond to the metric g0 with cone singularities along the
three lines. It would be interesting to discuss the case of higher degree curves in CP2, in the next section
we say something about the degree four case.

A simpler situation would be to study the behavior of spherical metrics on CP1 with cone singularities
as two of the singular points come together. The case of four points can be related to our discussion in
the previous paragraph. We think of M as the space of four unordered points in the Riemann sphere
modulo the action of Möbius transformations. Fix 1/2 < β < 1 and denote by P̃ the space of spherical
metrics on CP1 with cone angle 2πβ at four distinct points, modulo isometry. We can replace P by P̃
in our previous discussion without any change. This time, the metric g0 corresponds to the spherical
metric on CP1 with two cone singularities of angle 2β − 1.

6.4 The case of a general smooth curve in C2

An interesting project is to extend THEOREM 1 to the case of curves for which the asymptotic lines
don’t need to be different. Let us consider the example of C = {w = z2}. In this case we think that for
any 1/2 < β < 1 there should be a Ricci-flat metric with cone angle 2πβ along C asymptotic to the cone
Cγ ×C, with γ = 2β − 1. A way to work out this relation between β and γ is to cut two disjoint wedge
shaped regions of angle 2π(1 − β) from the plane, identify the corresponding sides to get a space with
two cone singularities of angle 2πβ and then let the singular points come together. See Figure 5. In the
case that such a metric exists, formula 6.4 allows us to compute its energy

E = 1 + (β − 1)− γ = 1− β. (6.10)

We expect to find these metrics in the situation of Cε → 2C0. Let us illustrate our speculations with an
example, coming from a classical discussion involving Riemann surfaces of genus 3. (See Chapter 12 in
[16].) Let Q be a non-degenerate quadratic form in three variables, so C0 = {Q = 0} ⊂ CP2 is a smooth
conic. Let F be a generic polynomial of degree 4 and let Cε = {Q2 + εF} = 0. Write Z = {F = 0}, so
that for a typical F the intersection Z∩C0 consists of 8 distinct points p1, . . . , p8. For small and non-zero
ε the curve Cε is smooth and one can think of it as an approximate double cover of C0, branched over the
points p1, . . . , p8. Fix some β > 1/2, assume that there exist KE metrics ωε with cone angle 2πβ along
Cε and a KE metric ω0 with cone angle 2πγ along C0. In this situation we would expect that ωε → ω0.
We can compute the energy of the metrics using 6.2

E(ωε) = 3 + (β − 1)χ(Cε) = 3 + (β − 1)(−4) = 7− 4β

E(ω0) = 3 + (γ − 1)χ(C0) = 3 + (2β − 2)2 = 4β − 1.

The total amount of energy lost is given by
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Figure 5: 1− γ = 2(1− β). This picture models the behavior as ε→ 0 of the metrics ωε in a transverse
direction to C0.

E(ωε)− E(ω0) = 8(1− β). (6.11)

We expect that re-scaling the metrics ωε around the points pi we get a Ricci-flat metric on C2 in the
limit with cone angle 2πβ along a parabola, as described above. Then 6.11 can be explained by the
formation of eight ‘bubbles’ with energy given by 6.10.

Consider now the curve C = {wz2 = 1}. We can ask for the existence of a Ricci-flat metric with
cone angle 2πβ transverse to C asymptotic to Cγ × Cβ . Let C0 ⊂ X be a curve with a normal crossing
singularity at p, so that there are complex coordinates (u, v) centered at p in which C0 = {uv+(h.o.t.) =
0}. Assume that the curves Cε converge to C0 as ε→ 0 with multiplicity 2 on the {u = 0} axis and with
multiplicity 1 on the {v = 0} axis. Suppose that there are KE metrics gε on X with cone angle 2πβ
along Cε. Under suitable hypothesis one might expect that re-scaling the metrics gε around small balls
centered at p one gets a Ricci-flat metric on C2 with cone angle 2πβ along C = {wz2 = 1} asymptotic
to Cγ × Cβ .

It is straightforward to state the case of asymptotic lines with higher multiplicity. If C = {w = zn},
we set n−1

n < β < 1 and γ = nβ − (n − 1). We ask for the existence of a Ricci-flat metric with cone
angle 2πβ transverse to C, asymptotic to Cγ × C. The author believes that there is a general existence
theorem for the case of any smooth complex curve, provided that the angle is such that the appropriate
flat cone metric exists. The work on the linear theory in Section 4 and the a priori estimates of Section 5
should carry over immediately to this more general case, the asymptotically conical regime is the crucial
property we use in those sections. The work one has to do to extend THEOREM 1 to the case of any
smooth curve is in the construction of the reference metric. On the other hand, the metrics corresponding
to C = {w = zn} should be invariant under the S1 action eiθ(z, w) = (eiθz, einθw). One can then ask
for a more explicit construction, similar in spirit to the Gibbons-Hawking ansatz.
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