17 research outputs found

    Light Controlling Light in an Optical Fibre: From Very Slow to Faster-Than-Light Speed

    Get PDF
    We demonstrate a method to achieve an extremely wide and flexible external control of the group velocity of signals as they propagate along an optical fibre. This control is achieved by means of the gain and loss mechanisms of stimulated Brillouin scattering in the fibre itself. Our experiments show that group velocities below 71,000 km/s on one hand, well exceeding the speed of light in vacuum on the other hand and even negative group velocities can readily be obtained with a simple benchtop experimental setup. Advanced schemes can be realized thanks to the extremely flexible possibility to shape the gain spectrum to make it optimized for applications. Ultra wide bandwidth, delaying with flat amplitude response and lower distortion were successfully demonstrated this way

    Distributed birefringence measurements using polarisation correlation in phase-sensitive OTDR

    Get PDF
    A method based on phase-sensitive OTDR is proposed for distributed birefringence measurements along optical fibres. A high accuracy is experimentally demonstrated, enabling the characterisation of single-mode fibres with a minimum detectable birefringence of the order of 1e-7

    Polarisation pulling in Brillouin optical time-domain analysers

    Get PDF
    The impact of Brillouin scattering on the polarisation of pump and probe in a Brillouin optical-time domain analyser is investigated. Experimental results indicate that the Brillouin interaction integrated along the entire sensing fibre produces a polarisation pulling force that changes the pump polarisation. Although this force can be compensated to first order by dual-sideband probes, the Brillouin gain/loss experienced by probe bands induce a net pulling that leads to uncompensated polarisation fading and reduced signal-to-noise ratio. While the use of two simultaneous orthogonally-polarised probes alleviates fading issues, spectral distortions originate from the coupling between Brillouin gain and polarisation pulling

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    Highly-sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    Get PDF
    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of ~10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing

    All-optical flip-flops based on dynamic Brillouin gratings in fibers

    Get PDF
    A method to generate an all-optical flip-flop is proposed and experimentally demonstrated based on dynamic Brillouin gratings (DBGs) in polarization maintaining fibers. In a fiber with sufficiently uniform birefringence, this flip-flop can provide extremely long storage times and ultra-wide bandwidth. The experimental results demonstrate an all-optical flip-flop operation using phase-modulated pulses of 300 ps and a 1 m long DBG. This has led to a time-bandwidth product of ∼30, being in this proof-of-concept setup mainly limited by the relatively low bandwidth of the used pulses and the short fiber length

    All-optical flip-flop based on dynamic Brillouin gratings

    Get PDF
    One of the most essential building blocks in modem electronics is the flip-flop. A flip-flop operates bi-stably between two states, remaining at a given output level (high or low level) until a specific input control signal changes. For many years, photonics has attempted to build all-optical flip-flops [1-3]; however, the success of these approaches has usually been limited by the dependence of the bi-stable operation on bit-rate and optical power [1, 2]. Furthermore, in most of the reported demonstrations, the storage time is inherently short. Typically, the figure-of-merit of these devices is measured by the time-bandwidth product, which is defined as the storage time of the device times the available bandwidth. State-of-the-art values are in the order of 10-100.This work proposes a method to generate all-optical flip-flops based on dynamic Brillouin gratings (DBGs) in polarisation maintaining fibres (PMF) [4]. Contrarily to existing approaches, this method can allow extremely long storage times and arbitrarily high bandwidth response. The technique relies on generating a very long, weak DBG along a PMF. The experimental setup here used as a proof-of-concept is shown in Fig. 1(a) (see ref. 4 for details). The DBG is generated by launching two continuous-wave pumps (Pump1 and Pump2) through the opposite sides of a 1 m-long Panda PMF. Both pumps are amplified by Erbium-doped fibre amplifiers (EDFAs) up to 25 dBm and aligned to the fast axis of the PMF. An electro-optic modulator is used to shift the optical frequency of one of the pumps, so that the frequencies fulfil the condition: fPump1 = fPump2 - QB, where QB (=10.8 GHz) is the Brillouin frequency along the fast axis of the PMF. The created DBG acts as the all-optical equivalent of an integrator [4]. To read the DBG, 300 ps pulses with controlled phase are generated (see lower branch in Fig. 1(a)) and launched along the slow axis of the PMF at the probe frequency fProbe = (nfast/nslow)fPump1, where nfast and nslow are the fibre refractive indexes along fast and slow axes. The output state of the flip-flop is changed (i.e. set and reset) using pulses with opposite phases. This flip-flop response is then observed at frequency

    Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers

    Get PDF
    The real remoteness of a distributed optical fiber sensor based on Brillouin optical time-domain analysis is considerably extended in this paper using seeded second-order Raman amplification and optical pulse coding. The presented analysis and the experimental results demonstrate that a proper optimization of both methods combined with a well-equalized two-sideband probe wave provide a suitable solution to enhance the signal-to-noise ratio of the measurements when an ultra-long sensing fiber is used. In particular, the implemented system is based on an extended optical fiber length, in which half of the fiber is used for sensing purposes, and the other half is used to carry the optical signals to the most distant sensing point, providing also a long fiber for distributed Raman amplification. Power levels of all signals launched into the fiber are properly optimized in order to avoid nonlinear effects, pump depletion, and especially any power imbalance between the two sidebands of the probe wave. This last issue turns out to be extremely important in ultra-long Brillouin sensing to provide strong robustness of the system against pump depletion. This way, by employing a 240 km-long optical fiber-loop, sensing from the interrogation unit up to a 120 km remote position (i.e., corresponding to the real sensing distance away from the sensor unit) is experimentally demonstrated with a spatial resolution of 5 m. Furthermore, this implementation requires no powered element in the whole 240 km fiber loop, providing considerable advantages in situations where the sensing cable crosses large unmanned areas
    corecore