2 research outputs found
Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves
[EN] The capture of CO2 from post-combustion streams or from other mixtures, such as natural gas, is an effective way of reducing CO2 emissions, which contribute to the greenhouse effect in the atmosphere. One of the developing technologies for this purpose is physisorption on selective solid adsorbents. The ideal adsorbents are selective toward CO2, have a large adsorption capacity at atmospheric pressure and are easily regenerated, resulting in high working capacity. Therefore, adsorbents combining molecular sieving properties and low heats of adsorption of CO2 are of clear interest as they will provide high selectivities and regenerabilities in CO2 separation process. Here we report that some aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) materials with LTA, CHA and AFI structures present lower heats of adsorption of CO2 (13Âż25 kJ/mol) than their structurally analogous zeolites at comparable framework charges. In some cases, their heats of adsorption are even lower than those of pure silica composition (20Âż25 kJ/mol). This could mean a great improvement in the regeneration process compared to the most frequently used zeolitic adsorbents for this application while maintaining most of their adsorption capacity, if materials with the right stability and pore size and topology are found.We acknowledge the Spanish Ministry of Sciences, Innovation and Universities (MCIU), State Research Agency (AEI), and the European Fund for Regional Development (FEDER) for their funding via projects Multi2HYcat (EU-Horizon 2020 funded project under grant agreement no. 720783), Program Severo Ochoa SEV-2016-0683 and RTI2018-101033-B-I00 and also Fundacion Ramon Areces for funding through a research contract (CIVP18A3908). EP-B thanks the MCIU for his grant (FPU15/01602). NG-C thanks MCIU for her grant (BES-2016-078178).PĂ©rez-Botella, E.; MartĂnez-Franco, R.; Gonzalez-Camuñas, N.; Cantin Sanz, A.; Palomino Roca, M.; Moliner Marin, M.; Valencia Valencia, S.... (2020). Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry. 8:1-10. https://doi.org/10.3389/fchem.2020.588712S1108Bacsik, Z., Cheung, O., Vasiliev, P., & Hedin, N. (2016). Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy, 162, 613-621. doi:10.1016/j.apenergy.2015.10.109BaerlocherC. H. McCuskerL. B. Database of Zeolite StructuresBoot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., ⊠Fennell, P. S. (2014). Carbon capture and storage update. Energy Environ. Sci., 7(1), 130-189. doi:10.1039/c3ee42350fBourgogneM. GuthJ.-L. WeyR. Process for the Preparation of Synthetic Zeolites, and Zeolites Obtained by Said Process1985Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., ⊠Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062-1176. doi:10.1039/c7ee02342aCheung, O., Liu, Q., Bacsik, Z., & Hedin, N. (2012). Silicoaluminophosphates as CO2 sorbents. Microporous and Mesoporous Materials, 156, 90-96. doi:10.1016/j.micromeso.2012.02.003Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909Dawson, D. M., Griffin, J. M., Seymour, V. R., Wheatley, P. S., Amri, M., Kurkiewicz, T., ⊠Ashbrook, S. E. (2017). A Multinuclear NMR Study of Six Forms of AlPO-34: Structure and Motional Broadening. The Journal of Physical Chemistry C, 121(3), 1781-1793. doi:10.1021/acs.jpcc.6b11908DĂaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800bFischer, M. (2017). Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation. Physical Chemistry Chemical Physics, 19(34), 22801-22812. doi:10.1039/c7cp03841kGarcĂa, E. J., PĂ©rez-Pellitero, J., Pirngruber, G. D., Jallut, C., Palomino, M., Rey, F., & Valencia, S. (2014). Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 53(23), 9860-9874. doi:10.1021/ie500207sGirnus, I., Jancke, K., Vetter, R., Richter-Mendau, J., & Caro, J. (1995). Large AlPO4-5 crystals by microwave heating. Zeolites, 15(1), 33-39. doi:10.1016/0144-2449(94)00004-cGlobal Status Report of CCS2019International Zeolite Association Synthesis CommissionLee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795yLee, S.-Y., & Park, S.-J. (2015). A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 23, 1-11. doi:10.1016/j.jiec.2014.09.001Lemishko, T., Valencia, S., Rey, F., JimĂ©nez-Ruiz, M., & Sastre, G. (2016). Inelastic Neutron Scattering Study on the Location of BrĂžnsted Acid Sites in High Silica LTA Zeolite. The Journal of Physical Chemistry C, 120(43), 24904-24909. doi:10.1021/acs.jpcc.6b09012Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. doi:10.1016/j.rser.2014.07.093Liu, X., Vlugt, T. J. H., & Bardow, A. (2011). MaxwellâStefan diffusivities in liquid mixtures: Using molecular dynamics for testing model predictions. Fluid Phase Equilibria, 301(1), 110-117. doi:10.1016/j.fluid.2010.11.019Man, P. P., Briend, M., Peltre, M. J., Lamy, A., Beaunier, P., & Barthomeuf, D. (1991). A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis. Zeolites, 11(6), 563-572. doi:10.1016/s0144-2449(05)80006-5Martin, C., Tosi-Pellenq, N., Patarin, J., & Coulomb, J. P. (1998). Sorption Properties of AlPO4-5 and SAPO-5 Zeolite-like Materials. Langmuir, 14(7), 1774-1778. doi:10.1021/la960755cMartĂnez-Franco, R., CantĂn, Ă., Vidal-Moya, A., Moliner, M., & Corma, A. (2015). Self-Assembled Aromatic Molecules as Efficient Organic Structure Directing Agents to Synthesize the Silicoaluminophosphate SAPO-42 with Isolated Si Species. Chemistry of Materials, 27(8), 2981-2989. doi:10.1021/acs.chemmater.5b00337MartĂnez-Franco, R., Li, Z., MartĂnez-Triguero, J., Moliner, M., & Corma, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science & Technology, 6(8), 2796-2806. doi:10.1039/c5cy02298cMiyamoto, M., Fujioka, Y., & Yogo, K. (2012). Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. Journal of Materials Chemistry, 22(38), 20186. doi:10.1039/c2jm34597hVan Nordstrand, R. A., Santilli, D. S., & Zones, S. I. (1988). An All-Silica Molecular Sieve That Is Isostructural with AlPO4-5. Perspectives in Molecular Sieve Science, 236-245. doi:10.1021/bk-1988-0368.ch015Palomino, M., Corma, A., Rey, F., & Valencia, S. (2009). New Insights on CO2âMethane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656Pham, T. D., Hudson, M. R., Brown, C. M., & Lobo, R. F. (2014). Molecular Basis for the High CO2Adsorption Capacity of Chabazite Zeolites. ChemSusChem, 7(11), 3031-3038. doi:10.1002/cssc.201402555Prakash, A. M., & Unnikrishnan, S. (1994). Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. Journal of the Chemical Society, Faraday Transactions, 90(15), 2291. doi:10.1039/ft9949002291Riboldi, L., & Bolland, O. (2017). Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials. Energy Procedia, 114, 2390-2400. doi:10.1016/j.egypro.2017.03.1385Rubin, E. S., Davison, J. E., & Herzog, H. J. (2015). The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378-400. doi:10.1016/j.ijggc.2015.05.018Schreyeck, L., Stumbe, J., Caullet, P., Mougenel, J.-C., & Marler, B. (1998). The diaza-polyoxa-macrocycle `Kryptofix222â as a new template for the synthesis of LTA-type AlPO4. Microporous and Mesoporous Materials, 22(1-3), 87-106. doi:10.1016/s1387-1811(98)00082-1Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., ⊠Webley, P. A. (2012). Discriminative Separation of Gases by a «Molecular Trapdoor» Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 134(46), 19246-19253. doi:10.1021/ja309274ySircar, S., & Myers, A. (2003). Gas Separation by Zeolites. Handbook of Zeolite Science and Technology. doi:10.1201/9780203911167.ch22Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., ⊠Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117NIST Chemistry WebBook, SRD 69âCarbon DioxideWilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062Young, D., & Davis, M. E. (1991). Studies on SAPO-5: synthesis with higher silicon contents. Zeolites, 11(3), 277-281. doi:10.1016/s0144-2449(05)80232-5Zibrowius, B., Löffler, E., & Hunger, M. (1992). Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites, 12(2), 167-174. doi:10.1016/0144-2449(92)90079-5Zones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-