12,543 research outputs found
Control of dissipation in superconducting films by magnetic stray fields
Hybrid superconducting/magnetic nanostructures on Si substrates have been
built with identical physical dimensions but different magnetic configurations.
By constructing arrays based on Co-dots with in-plane, out-of-plane, and vortex
state magnetic configurations, the stray fields are systematically tuned.
Dissipation in the mixed state of superconductors can be decreased (increased)
by several orders of magnitude by decreasing (increasing) the stray magnetic
fields. Furthermore, ordering of the stray fields over the entire array helps
to suppress dissipation and enhance commensurability effects increasing the
number of dissipation minima.Comment: 16 pages including 4 figures; accepted in Applied Physics Letter
Effective penetration length and interstitial vortex pinning in superconducting films with regular arrays of defects
In order to compare magnetic and non-magnetic pinning we have nanostructured
two superconducting films with regular arrays of pinning centers: Cu
(non-magnetic) dots in one case, and Py (magnetic) dots in the other. For low
applied magnetic fields, when all the vortices are pinned in the artificial
inclusions, magnetic dots prove to be better pinning centers, as has been
generally accepted. Unexpectedly, when the magnetic field is increased and
interstitial vortices appear, the results are very different: we show how the
stray field generated by the magnetic dots can produce an effective reduction
of the penetration length. This results in strong consequences in the transport
properties, which, depending on the dot separation, can lead to an enhancement
or worsening of the transport characteristics. Therefore, the election of the
magnetic or non-magnetic character of the pinning sites for an effective
reduction of dissipation will depend on the range of the applied magnetic
field.Comment: 10 pages, 3 figure
Superconducting/magnetic three state nanodevice for memory and reading applications
We present a simple nanodevice that can operate in two modes: i) three-state
memory and ii) reading device. The nanodevice is fabricated with an array of
ordered triangular-shaped nanomagnets embedded in a superconducting thin film.
The input signal is ac current and the output signal is dc voltage. Vortex
ratchet effect in combination with out of plane magnetic anisotropy of the
nanomagnets is the background physics which governs the nanodevice performance.Comment: 10 pages, 4 figure
Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data
Context. The direct detection of exoplanets with high-contrast imaging
requires advanced data processing methods to disentangle potential planetary
signals from bright quasi-static speckles. Among them, angular differential
imaging (ADI) permits potential planetary signals with a known rotation rate to
be separated from instrumental speckles that are either statics or slowly
variable. The method presented in this paper, called ANDROMEDA for ANgular
Differential OptiMal Exoplanet Detection Algorithm is based on a maximum
likelihood approach to ADI and is used to estimate the position and the flux of
any point source present in the field of view. Aims. In order to optimize and
experimentally validate this previously proposed method, we applied ANDROMEDA
to real VLT/NaCo data. In addition to its pure detection capability, we
investigated the possibility of defining simple and efficient criteria for
automatic point source extraction able to support the processing of large
surveys. Methods. To assess the performance of the method, we applied ANDROMEDA
on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright
stars and on which we added synthetic planets of known position and flux in the
field. In order to accommodate the real data properties, it was necessary to
develop additional pre-processing and post-processing steps to the initially
proposed algorithm. We then investigated its skill in the challenging case of a
well-known target, Pictoris, whose companion is close to the detection
limit and we compared our results to those obtained by another method based on
principal component analysis (PCA). Results. Application on VLT/NaCo data
demonstrates the ability of ANDROMEDA to automatically detect and characterize
point sources present in the image field. We end up with a robust method
bringing consistent results with a sensitivity similar to the recently
published algorithms, with only two parameters to be fine tuned. Moreover, the
companion flux estimates are not biased by the algorithm parameters and do not
require a posteriori corrections. Conclusions. ANDROMEDA is an attractive
alternative to current standard image processing methods that can be readily
applied to on-sky data
Li-rich RGB stars in the Galactic Bulge
We present Lithium abundance determination for a sample of K giant stars in
the galactic bulge. The stars presented here are the only 13 stars with
detectable Lithium line (6767.18 A) among ~400 stars for which we have spectra
in this wavelength range, half of them in Baade's Window (b=-4) and half in a
field at b=-6. The stars were observed with the GIRAFFE spectrograph of
FLAMES@VLT, with a spectral resolution of R~20,000. Abundances were derived via
spectral synthesis and the results are compared with those for stars with
similar parameters, but no detectable Li line. We find 13 stars with a
detectable Li line, among which 2 have abundances A(Li)>2.7. No clear
correlations were found between the Li abundance and those of other elements.
With the exception of the two most Li rich stars, the others follow a fairly
tight A(Li)-T_eff correlation. It would seems that there must be a Li
production phase during the red giant branch (RGB), acting either on a very
short timescale, or selectively only in some stars. The proposed Li production
phase associated with the RGB bump cannot be excluded, although our targets are
significantly brighter than the predicted RGB bump magnitude for a population
at 8 kpcComment: 8 pages, 9 figures, accepted for publication in A&
Dependence on the Identification of the Scale Energy Parameter Q 2 in the Quark Distribution Functions for a DIS Production of Za
We discuss the Z-production in a DIS (Deep Inelastic Scattering) process e + p → e + Z + X using the Parton Model, within the context of the Standard Model. In contrast with deep inelastic eP-scattering (e + p → e + X), where the choice of Q2, as the transferred momentum squared, is unambiguous; whereas in the case of boson production , the transferred momentum squared, at quark level, depends on the reaction mechanism (where is the EW interaction taking place). We suggest a proposal based on kinematics of the process considered and the usual criterion for Q2 , which leads to a simple and practical prescription to calculate Z-production via ep-DIS. We also introduce different options in order o perform the convolution of the parton distribution functions (PDFs) and the scattering amplitude of he quark processes. Our aim in this work is to analyze and show how large could be the dependence of the total cross section rates on different possible prescriptions used for the identification of the scale energy parameter Q2 . We present results for the total cross section as a function of the total energy √s of the system ep, in the range 300 <√s ≤ 1300 Ge
Early Science with the Large Millimeter Telescope: an energy-driven wind revealed by massive molecular and fast X-ray outflows in the Seyfert Galaxy IRAS 17020+4544
We report on the coexistence of powerful gas outflows observed in millimeter
and X-ray data of the Radio-Loud Narrow Line Seyfert 1 Galaxy IRAS 17020+4544.
Thanks to the large collecting power of the Large Millimeter Telescope, a
prominent line arising from the 12CO(1-0) transition was revealed in recent
observations of this source. The complex profile is composed by a narrow
double-peak line and a broad wing. While the double-peak structure may be
arising in a disk of molecular material, the broad wing is interpreted as the
signature of a massive outflow of molecular gas with an approximate bulk
velocity of -660 km/s. This molecular wind is likely associated to a
multi-component X-ray Ultra-Fast Outflow with velocities reaching up to ~0.1c
and column densities in the range 10^{21-23.9} cm^-2 that was reported in the
source prior to the LMT observations. The momentum load estimated in the two
gas phases indicates that within the observational uncertainties the outflow is
consistent with being propagating through the galaxy and sweeping up the gas
while conserving its energy. This scenario, which has been often postulated as
a viable mechanism of how AGN feedback takes place, has so far been observed
only in ULIRGs sources. IRAS 17020+4544 with bolometric and infrared luminosity
respectively of 5X10^{44} erg/s and 1.05X10^{11} L_sun appears to be an example
of AGN feedback in a NLSy1 Galaxy (a low power AGN). New proprietary
multi-wavelength data recently obtained on this source will allow us to
corroborate the proposed hypothesis.Comment: Accepted for publication on ApJ Letters, 9 pages, 4 figure
- …