3 research outputs found

    Centrality measure in social networks based on linear threshold model

    Get PDF
    Centrality and influence spread are two of the most studied concepts in social network analysis. In recent years, centrality measures have attracted the attention of many researchers, generating a large and varied number of new studies about social network analysis and its applications. However, as far as we know, traditional models of influence spread have not yet been exhaustively used to define centrality measures according to the influence criteria. Most of the considered work in this topic is based on the independent cascade model. In this paper we explore the possibilities of the linear threshold model for the definition of centrality measures to be used on weighted and labeled social networks. We propose a new centrality measure to rank the users of the network, the Linear Threshold Rank (LTR), and a centralization measure to determine to what extent the entire network has a centralized structure, the Linear Threshold Centralization (LTC). We appraise the viability of the approach through several case studies. We consider four different social networks to compare our new measures with two centrality measures based on relevance criteria and another centrality measure based on the independent cascade model. Our results show that our measures are useful for ranking actors and networks in a distinguishable way.Peer ReviewedPostprint (author's final draft

    The neighborhood role in the linear threshold rank on social networks

    No full text
    Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalizationPeer Reviewe

    The neighborhood role in the linear threshold rank on social networks

    No full text
    Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalizationPeer ReviewedPostprint (author's final draft
    corecore