18,246 research outputs found

    Numerical study of barriers and valleys in the free-energy landscape of spin glasses

    Get PDF
    We study the problem of glassy relaxations in the presence of an external field in the highly controlled context of a spin-glass simulation. We consider a small spin glass in three dimensions (specifically, a lattice of size L=8, small enough to be equilibrated through a Parallel Tempering simulations at low temperatures, deep in the spin glass phase). After equilibrating the sample, an external field is switched on, and the subsequent dynamics is studied. The field turns out to reduce the relaxation time, but huge statistical fluctuations are found when different samples are compared. After taking care of these fluctuations we find that the expected linear regime is very narrow. Nevertheless, when regarded as a purely numerical method, we find that the external field is extremely effective in reducing the relaxation times.Comment: 22 pages, 10 figures; Published versio

    Effects of Gamma Ray Bursts in Earth Biosphere

    Full text link
    We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and show a first modeling of the spectral reduction of light by NO2 formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modelingComment: Accepted for publication in Astrophysics & Space Scienc

    Regulation of the Activity of the Dual-Function DnaA Protein in Caulobacter crescentus

    Get PDF
    DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus

    Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    Get PDF
    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration

    Dielectric antenna effects in integrating line piezoelectric sensors for optoacoustic imaging

    Full text link
    This work studies the adverse effects, as regards noise, of immersing in water an integrating line piezoelectric detector devoted to optoacoustic imaging. We found that the sensor, in conjunction with the acoustic coupling medium (water), behaves as a resonant dielectric antenna. This phenomenon limits the performance of the system because it efficiently captures unwanted electromagnetic signals. The requirement of good acoustic coupling between the water and the sensor precluded the use of a standard metallic shielding enclosure. Therefore, we resorted to a silver-paint based electrical shield deposited on the detector. This easy-to-implement and low-cost solution significantly increases the signal to noise ratio and does not degrade the acoustic performance. The noise reduction allows the use of a better transimpedance amplifier with higher gain and bandwidth; thus achieving a very sensitive, low-noise detection system.Comment: 7 pages, 7 figures, 1 table, submitted to Meas. Sci. Technol. on March 24, 202

    Responsive anionophores with AND logic multi-stimuli activation

    Get PDF
    Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers

    Bipolar membranes with fluid distribution passages

    Get PDF
    The present invention provides a bipolar membrane and methods for making and using the membrane. The bipolar membrane comprises a cation-selective region, an anion-selective region, an interfacial region between the anion-selective region and the cation-selective region, and means for delivering fluid directly into the interfacial region. The means for delivering fluid includes passages that may comprise a fluid-permeable material, a wicking material, an open passage disposed within the membrane or some combination thereof. The passages may be provided in many shapes, sizes and configurations, but preferably deliver fluid directly to the interfacial region so that the rate of electrodialysis is no longer limited by the diffusion of fluid through the cation- or anion-selective regions to the interfacial region
    corecore