3 research outputs found

    Physiology and Pathology of Neuroimmunology: Role of Inflammation in Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disease that affects 1% of the population aged 65 and over and is the second most common neurodegenerative disease next to Alzheimer’s disease. Interneuronal proteinaceous inclusions called Lewy bodies (LB) and a selective degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNPC) are the main features of PD pathology. The most common clinical manifestations are rigidity, tremor, bradykinesia, postural instability, sleep disorders, alterations in gait, smell, memory, and dementia. Genetic and environmental factors are involved in PD, and, recently, oxidative stress, proteasome-mediated protein degradation, and inflammation have acquired relevance as major mechanisms of neuronal dysfunction. Increased levels of reactive oxygen and nitrogen species in the brain contribute to greater vulnerability of proteins to nitro-oxidative modification and to greater degrees of aggregation. These protein aggregates contain a variety of proteins of which α-synuclein appears to be the main structural component. Interestingly, α-synuclein can be secreted by neuronal cells and may lead the initiation and the maintenance of inflammatory events through the activation of microglia, which contributes to dopaminergic neuron depletion. New evidence also suggests that PD may be the result of an autoimmune response in which the immune cells recognize the neurons as foreign elements and would act against them, causing their death

    Oxidative Stress and Parkinson’s Disease: Effects on Environmental Toxicology

    Get PDF
    Epidemiological studies have found an increased risk of Parkinson’s disease (PD) with environmental factors such as exposure to substances derived from industrial processes, use of agrochemicals, or living in a rural environment. The hypothesis that certain environmental toxins could be the source of the EP is supported by the discovery that chemicals such as herbicides paraquat, diquat, and the fungicide maneb are selectively toxic in nigrostriatal dopaminergic neurons. Also, one of the insecticides produced by plants, such as rotenone, and by-product of the synthesis of synthetic heroin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) can be reproduced in animal models where neurochemicals, histopathological, and clinical characteristic of PD can be found. Interestingly, there are similarities in the chemical structure of paraquat and MPTP. Recent evidence exhibited that inflammation and oxidative stress play an essential role in the development of PD. So, in our laboratory we found that in an animal model melatonin decreases the products of lipid oxidation, nitric oxide metabolites, and the activity of cyclooxygenase 2, which are induced by an intraperitoneal injection of MPTP. This suggests that the neuroprotective effects of melatonin are partially attributed to its antioxidant scavenging and anti-inflammatory action

    Novel Point Mutations and A8027G Polymorphism in Mitochondrial-DNA-Encoded Cytochrome c Oxidase II Gene in Mexican Patients with Probable Alzheimer Disease

    Get PDF
    Mitochondrial dysfunction has been thought to contribute to Alzheimer disease (AD) pathogenesis through the accumulation of mitochondrial DNA mutations and net production of reactive oxygen species (ROS). Mitochondrial cytochrome c-oxidase plays a key role in the regulation of aerobic production of energy and is composed of 13 subunits. The 3 largest subunits (I, II, and III) forming the catalytic core are encoded by mitochondrial DNA. The aim of this work was to look for mutations in mitochondrial cytochrome c-oxidase gene II (MTCO II) in blood samples from probable AD Mexican patients. MTCO II gene was sequenced in 33 patients with diagnosis of probable AD. Four patients (12%) harbored the A8027G polymorphism and three of them were early onset (EO) AD cases with familial history of the disease. In addition, other four patients with EOAD had only one of the following point mutations: A8003C, T8082C, C8201T, or G7603A. Neither of the point mutations found in this work has been described previously for AD patients, and the A8027G polymorphism has been described previously; however, it hasn’t been related to AD. We will need further investigation to demonstrate the role of the point mutations of mitochondrial DNA in the pathogenesis of AD
    corecore