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Abstract

Parkinson’s disease (PD) is a neurodegenerative disease that affects 1% of the popu-
lation aged 65 and over and is the second most common neurodegenerative disease 
next to Alzheimer’s disease. Interneuronal proteinaceous inclusions called Lewy bod-
ies (LB) and a selective degeneration of dopaminergic neurons of the substantia nigra 
pars compacta (SNPC) are the main features of PD pathology. The most common clinical 
manifestations are rigidity, tremor, bradykinesia, postural instability, sleep disorders, 
alterations in gait, smell, memory, and dementia. Genetic and environmental factors 
are involved in PD, and, recently, oxidative stress, proteasome-mediated protein deg-
radation, and inflammation have acquired relevance as major mechanisms of neuronal 
dysfunction. Increased levels of reactive oxygen and nitrogen species in the brain con-
tribute to greater vulnerability of proteins to nitro-oxidative modification and to greater 
degrees of aggregation. These protein aggregates contain a variety of proteins of which 
α-synuclein appears to be the main structural component. Interestingly, α-synuclein 
can be secreted by neuronal cells and may lead the initiation and the maintenance 
of inflammatory events through the activation of microglia, which contributes to dopa-
minergic neuron depletion. New evidence also suggests that PD may be the result 
of an  autoimmune response in which the immune cells recognize the neurons as foreign 
elements and would act against them, causing their death.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

The central nervous system (CNS) has traditionally been considered immunologically privi-
leged due to the protection conferred by the blood-brain barrier; it lacks lymphatic vessels 
and is devoid of dendritic cells, and the parenchyma cells do not express major histocompati-
bility complex (MHC) class-I antigen-presenting molecules. However, the CNS can modulate 
the immune response and limit inflammation-induced tissue damage [1]. Neurons of the CNS 
are actively involved in control of the immune response by modulating the function of glial 
cells and T lymphocytes. There are mechanisms involved in the control of the immune 
response: the direct contact through membrane glycoproteins (CD22, CD47, CD200), neural 
cell adhesion molecules (NCAM or CD56), intercellular cell adhesion molecule-1 (ICAM-1), 
semaphorins and cadherins, and the mechanism independent of cell-cell contact that involves 
the expression of the Fas ligand or CD95L, which promote apoptosis of microglial cells and T 
lymphocytes. The immune system is not a completely autonomous system since the lymphoid 
organs are innervated by cholinergic, catecholaminergic, and peptidergic neurons and other 
neurons [2]. Thus, the nervous system and the immune system can interact not only through 
the hypothalamic-pituitary-adrenal axis, whose activation leads to the synthesis of cortico-
steroids that inhibit the immune response, but can also do so through neuronal circuits at 
the central level through the autonomic nervous system (ANS), both sympathetic and para-
sympathetic, which, through sensory and effector circuits, transmit impulses that reflexively 
induce the implementation of an anti-inflammatory response. In physiological conditions, 
the sensory and afferent fibers of the ANS travel in the vagus nerve from the peripheral 
tissues to the CNS to provide information about tissue function or, on the contrary, about 
the existence of injury within tissues that leads to the development of a cytokine-induced 
inflammatory process. The afferent sensory stimulus triggers a response in the CNS that 
includes the signs and symptoms of the disease and the efferent sympathetic pathway, called 
the cholinergic anti-inflammatory reflex, which, through the vagus nerve, inhibits the syn-
thesis of pro-inflammatory cytokines and thus limits or prevents tissue damage produced by 
these mediators.

Pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-1, and IL-6, 
produced during the activation of innate immunity cells in peripheral tissues, are able to mod-
ulate the activity of CNS neuronal circuits through specific receptors expressed by neurons 
of the hypothalamus and other regions of the brain. In this way, a response is characterized 
by the transmission of action potentials that trigger local and systemic symptoms and signs 
of the disease syndrome, which are then controlled by the cholinergic and anti-inflammatory 
vagal route. This CNS response leads not only to control the progression of the inflammatory pro-
cess in the peripheral tissue but also to prevent eventual immune-mediated tissue damage. Thus, 
the immunological activation of this neuronal circuit confers protection against tissue damage by 
inhibiting the release of cytokines during infection, autoimmunity, shock, and other inflamma-
tory syndromes in the CNS.

Physiology and Pathology of Immunology174









































[35] Duke DC, Moran LB, Pearce RKB, Graeber MB. The medial and lateral substantia nigra 
in Parkinson’s disease: mRNA profiles associated with higher brain tissue vulnerability. 
Neurogenetics. 2007;8(2):83-94

[36] Xu J, Kao S-Y, Lee FJS, Song W, Jin L-W, Yankner BA. Dopamine-dependent neurotoxic-

ity of α-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. 
Nature Medicine. 2002;8(6):600-606

[37] Miyazaki I, Asanuma M. Dopaminergic neuron-specific oxidative stress caused by 
dopamine itself dopaminergic neuron-specific oxidative stress caused by dopamine 
itself. Acta Medica Okayama. 2008;62(3):141-150

[38] Conway KA, Rochet J-C, Bieganski RM, Lansbury PT. Kinetic stabilization of the  
α-synuclein protofibril by a dopamine-α-synuclein Adduct. Science. 2001;294(5545): 
1346-1349

[39] Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson’s disease: 
Molecules implicated in the formation and degradation of α-synuclein aggregates. 
Neuropathology. 2007;27(5):494-506

[40] Esser C, Alberti S, Höhfeld J. Cooperation of molecular chaperones with the ubiq-

uitin/proteasome system. Biochimica et Biophysica Acta—Molecular Cell Research. 
2004;1695(1):171-188

[41] McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal func-

tion in sporadic Parkinson’s disease. Experimental Neurology. 2003;179(1):38-46

[42] McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin–pro-

teasome system in Parkinson's disease. Nature Reviews Neuroscience. 2001;2(8):589-594

[43] Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticu-

lum stress and the unfolded protein response in cellular models of Parkinson’s disease. 
The Journal of Neuroscience. 2002;22(24):10690-10698

[44] McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O. Selective loss of 20S 
proteasome α-subunits in the substantia nigra pars compacta in Parkinson’s disease. 
Neuroscience Letters. 2002;326(3):155-158

[45] Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS. Neuroinflammation and α- 
synuclein dysfunction potentiate each other, driving chronic progression of neurode-

generation in a mouse model of Parkinson's disease. Environmental Health Perspectives. 
2011;119:807-814

[46] Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, 
Papadimitriou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson's dis-

ease. Journal of Neurochemistry. 2007;101:749-756

[47] Morrison BE, Marcondes MC, Nomura DK, Sanchez M, Sanchez A, Saar I, et al. Cutting 
edge: IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-
mediated loss following chronic peripheral treatment with lipopolysaccharide. Journal 
of Immunology. 2012;189:5498-5502

Physiology and Pathology of Immunology194



[48] Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, et al. Regionally-specific 
microglial activation in young mice over-expressing human wildtype alpha-synuclein. 
Experimental Neurology. 2012;237:318-334

[49] Barcia C, Ros CM, Annese V, Gómez A, Ros F, Aguado D, et al. IFN-γ signaling, 
with the synergistic contribution of TNF-α, mediates cell specific microglial and astro-

glial activation in experimental models of Parkinson’s disease. Cell Death & Disease. 
2011;2:e142

[50] Giordano S, Darley-Usmar V, Zhang J. Autophagy as an essential cellular antioxidant 
pathway in neurodegenerative disease. Redox Biology. 2014;2(4):82-90

[51] Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neu-

roinflammation, neurodegeneration, and neuropathic pain. Mediators of Inflammation. 
2013;2013:480739

[52] Banks WA. Blood-brain barrier transport of cytokines: A mechanism for neuropathol-
ogy. Current Pharmaceutical Design. 2005;11:973-984

[53] He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells 
after 6-hydroxydopamine injection into mouse striatum. Brain Research. 2001;909:187-193

[54] Neumann H, Misgeld T, Matsumuro K, Wekerle H. Neurotrophins inhibit major histo-

compatibility class 11 inducibility of microglia: Involvement of the p75 neurotrophin 
receptor. Proceedingsof the National Academy of Sciences of the USA. 1998;95:5779-5784

[55] Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, et al. FcaRII/Cp23 
is expressed in Parkinson's rdisease and induces, in vitro, production of nitric oxide 
and tumor necrosis factor-a in glial cells. The Journal of Neuroscience. 1999;19:3440-3447

[56] Land WG. The Role of Damage-Associated Molecular Patterns (DAMPs) in Human dis-

eases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. 
Sultan Qaboos University Medical Journal. 2015;15(2):e157-e170

[57] Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration 
of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model 
of Parkinson disease. The Journal of Clinical Investigation. 2009;119:182-192

[58] Iravani MM, Sadeghian M, Leung CC, Jenner P, Rose S. Lipopolysaccharide-induced 
nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic 
glial cell line-derived neurotrophic factor. Neuroscience Letters. 2012;510:138-142

[59] Flügel A, Matsumuro K, Newmann H, Kinkert WE, Bimbacher R, Lassmann H, 
et al. Anti–inflammatory activity of nerve growth factor in experimental autoimmune 
encephalomyelitis: Inhibition of monocyte transendothelial migration. European Journal 
of Immunology. 2001;31:11-22.

[60] Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, et al. 
Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflam-

mation. Science. 2011;334:809-813

Physiology and Pathology of Neuroimmunology: Role of Inflammation in Parkinson’s Disease
http://dx.doi.org/10.5772/intechopen.70377

195



[61] Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C, et al. LRRK2 is involved 
in the IFN-gamma response and host response to pathogens. Journal of Immunology. 
2010;185:5577-5585

[62] Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins 
in Parkinson's disease. Journal of Neural Transmission. 2000;60:277-290

[63] Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM. Neuroprotective 
function of DJ-1 in Parkinson's disease. Oxidative Medicine and Cellular Longevity. 
2013;2013:683920

[64] Goldwurm S, Di Fonzo A, Simons EJ, Rohé CF, Zini M, Canesi M, et al. The G6055A 
(G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson's disease 
and originates from a common ancestor. Journal of Medical Genetics. 2005;42:e65

[65] Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, et al. Leucine-rich repeat 
kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degenera-

tion. Proceedings of the National Academy of Sciences of the United States of America. 
2005;102:18676-18681

[66] Russo I, Bubacco L, Greggio E. LRRK2 and neuroinflammation: Partners in crime 
in Parkinson's disease? Journal of Neuroinflammation. 2014;11:52-52

[67] Solano SM, Miller DW, Augood SJ, Young AB, Penney JB. Expression of alpha-synuclein, 
parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain. genes 
associated with familial Parkinson's disease. Annals of Neurology. 2000;47:201-210

[68] Wilkinson KD, Deshpande S, Larsen CN. Comparisons of neuronal (PGP 9.5) and non-
neuronal ubiquitin C-terminal hydrolases. Biochemical Society Transactions. 1992; 
20:631-637

[69] Wilkinson KD, Lee KM, Deshpande S, Duerksen P, Boss JM, Pohl J. The neuron-specific 
protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 1989;246:670-673

[70] Harhangi BS, Farrer MJ, Lincoln S, Bonifati V, Meco G, De Michele G, et al. The Ile93Met 
mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed 
in European cases with familial Parkinson’s disease. Neuroscience Letters. 1999;270:1-4

[71] Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J,et al. Alpha-
synuclein locus triplication causes Parkinson's disease. Science. 2003;302(5646):841

[72] Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's dis-

ease. Science. 2003;302(5646):819-822

[73] Loera V, Sandoval L, Pacheco FP, Macías MÁ, Alatorre MA, González ED, et al. Novel 
point mutations and a8027g polymorphism in mitochondrial-DNA-encoded cytochrome 
C oxidase II gene in mexican patients with probable Alzheimer disease. International 
Journal of Alzheimer's Disease. 2014;2014:794530

[74] Mitsumoto A, Nakagawa Y. DJ-1 is an indicator for endogenous reactive oxygen species 
elicited by endotoxin. Free Radical Research. 2001;35(6):885-893

Physiology and Pathology of Immunology196



[75] Canet RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, et al. 
The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-
driven mitochondrial localization. Proceedings of the National Academy of Sciences 
of the United States of America. 2004;101(24):9103-9108

[76] Bosgraaf L, Van Haastert PJ. Roc, a Ras/GTPase domain in complex proteins. Biochimica 
et Biophysica Acta. 2003;1643(1-3):5-10

[77] Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial 
complex I deficiency in Parkinson's disease. Lancet. 1989;1(8649):1269

[78] Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, et al. Anatomic 
and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's 
disease. Journal of Neurochemistry. 1990;55(6):2142-2145

[79] Mann VM, Cooper JM, Daniel SE, Srai K, Jenner P, Marsden CD, et al. Complex 
I, iron, and ferritin in Parkinson's disease substantia nigra. Annals of Neurology. 
1994;36(6):876-881

[80] Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, et al. Low platelet mitochon-
drial complex I and complex II/III activity in early untreated Parkinson's disease. Annals 
of Neurology. 1995;37(6):714-722

[81] Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH. Platelet mitochondrial func-
tion in Parkinson's disease. The Royal Kings and Queens Parkinson Disease Research 
Group. Annals of Neurology. 1992;32(6):782-788

[82] Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idio-
pathic Parkinson's disease. Annals of Neurology. 1989;26(6):719-723

[83] Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, 
et al. Parkinson's disease-related proteins PINK1 and parkin repress mitochondrial anti-
gen presentation. Cell. 2016;166(2):314-327

Physiology and Pathology of Neuroimmunology: Role of Inflammation in Parkinson’s Disease
http://dx.doi.org/10.5772/intechopen.70377

197




