15 research outputs found

    Periodization and programming for individual 400 m medley swimmers

    Get PDF
    Knowledge in the scientific domain of individual medley (IM) swimming training over a competitive season is limited. The purpose of this study was to propose a detailed coaching framework incorporating the key elements of a periodized training regimen for a 400 m IM swimmer. This framework was based on the available coaching and scientific literature and the practical experience and expertise of the collaborating authors. The season has been divided in two or three macrocycles, further divided in three mesocycles each (six or nine mesocycles in total), in alignment with the two or three main competitions in each macrocycle. The principal training contents to develop during the season expressed in blood lactate zones are: aerobic training (~2 mmol·L(−1)), lactate threshold pace (~4 mmol·L(−1)) and VO(2)max (maximum oxygen uptake) (~6 mmol·L(−1)). Strength training should focus on maximum strength, power and speed endurance during the season. Altitude training camps can be placed strategically within the training season to promote physiological adaptation and improvements in performance. A well-constructed technical framework will permit development of training strategies for the 400 m IM swimmer to improve both training and competitive performance

    Effects of Dry-Land Training Programs on Swimming Turn Performance: A Systematic Review.

    Get PDF
    Swimming coaches have prescribed dry-land training programs over the years to improve the overall swimming performance (starts, clean swimming, turns and finish). The main aim of the present systematic review was to examine the effects of dry-land strength and conditioning programs on swimming turns. Four online databases were scrutinised, data were extracted using the Preferred PRISMA guidelines and the PEDro scale was applied. A total of 1259 articles were retrieved from database searches. From the 19 studies which were full-text evaluated, six studies were included in the review process. The review indicated that plyometric, strength, ballistic and core training programs were implemented for improving swimming turn performance. Strength, ballistic and plyometric training focusing on neural enhancement seem to be effective for improving swimming turn performance. The data related to training of the core were not conclusive. Coaches should consider incorporating exercises focusing on improving the neuromuscular factor of the leg-extensor muscles into their daily dry-land training programs. More researches are needed to provide a better understanding of the training methods effects and training organisations for improving swimming turn performance.post-print626 K

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore