8,081 research outputs found
A linear optimization based method for data privacy in statistical tabular data
National Statistical Agencies routinely disseminate large amounts of data. Prior to dissemination these data have to be protected to avoid releasing confidential information. Controlled tabular adjustment (CTA) is one of the available methods for this purpose. CTA formulates an optimization problem that looks for the safe table which is closest to the original one. The standard CTA approach results in a mixed integer linear optimization (MILO) problem, which is very challenging for current
technology. In this work we present a much less costly variant of CTA that formulates a multiobjective linear optimization (LO) problem, where binary variables are pre-fixed, and the resulting continuous problem is solved by lexicographic optimization. Extensive computational results are reported using both commercial (CPLEX and XPRESS) and open source (Clp) solvers, with either simplex or interior-point methods, on a set of real instances. Most instances were successfully solved with
the LO-CTA variant in less than one hour, while many of them are computationally very expensive with the MILO-CTA formulation. The interior-point method outperformed simplex in this particular application.Peer ReviewedPreprin
Adaptive neurofuzzy ANFIS modeling of laser surface treatments
This paper introduces a new ANFIS adaptive
neurofuzzy inference model for laser surface heat treatments
based on the Green’s function. Due to its high
versatility, efficiency and low simulation time, this model
is suitable not only for the analysis and design of control
systems, but also for the development of an expert real time
supervision system that would allow detecting and preventing
any failure during the treatment
Perturbative contributions to Wilson loops in twisted lattice boxes and reduced models
We compute the perturbative expression of Wilson loops up to order for
SU() lattice gauge theories with Wilson action on a finite box with twisted
boundary conditions. Our formulas are valid for any dimension and any
irreducible twist. They contain as a special case that of the 4-dimensional
Twisted Eguchi-Kawai model for a symmetric twist with flux . Our results
allow us to analyze the finite volume corrections as a function of the flux. In
particular, one can quantify the approach to volume independence at large
as a function of flux . The contribution of fermion fields in the adjoint
representation is also analyzed.Comment: pdflatex 57 pages, 9 figures, 4 appendice
Anthropomorphism Index of Mobility for Artificial Hands
The increasing development of anthropomorphic artificial hands makes necessary quick metrics that analyze their anthropomorphism. In this study, a human grasp experiment on the most important grasp types was undertaken in order to obtain an Anthropomorphism Index of Mobility (AIM) for artificial hands. The AIM evaluates the topology of the whole hand, joints and degrees of freedom (DoFs), and the possibility to control these DoFs independently. It uses a set of weighting factors, obtained from analysis of human grasping, depending on the relevance of the different groups of DoFs of the hand. The computation of the index is straightforward, making it a useful tool for analyzing new artificial hands in early stages of the design process and for grading human-likeness of existing artificial hands. Thirteen artificial hands, both prosthetic and robotic, were evaluated and compared using the AIM, highlighting the reasons behind their differences. The AIM was also compared with other indexes in the literature with more cumbersome computation, ranking equally different artificial hands. As the index was primarily proposed for prosthetic hands, normally used as nondominant hands in unilateral amputees, the grasp types selected for the human grasp experiment were the most relevant for the human nondominant hand to reinforce bimanual grasping in activities of daily living. However, it was shown that the effect of using the grasping information from the dominant hand is small, indicating that the index is also valid for evaluating the artificial hand as dominant and so being valid for bilateral amputees or robotic hands
Analysis of the effect of design parameters and their interactions on the strength of dental restorations with endodontic posts, using finite element models and statistical analysis
Many previous studies, both in vitro and with model simulations, have been conducted in an attempt to reach a full understanding of how the different design parameters of an endodontically restored tooth affect its mechanical strength. However, differences in the experimental set-up or modelling conditions and the limited number of parameters studied in each case prevent us from obtaining clear conclusions about the real significance of each parameter. In this work, a new approach is proposed for this purpose based on the combination of a validated three-dimensional parametric biomechanical model of the restored tooth and statistical analysis using full factorial analysis of variance. A two-step approach with two virtual tests (with, respectively, 128 and 81 finite element models) was used in the present work to study the effect of several design parameters on the strength of a restored incisor, using full factorial designs. Within the limitations of this study, and for cases where the parameters are within the ranges that were tested, the conclusions indicate that the material of the post is the most significant factor as far as its strength is concerned, the use of a low Young's modulus being preferable for this component. Once the post material has been chosen, the geometry of the post is of less importance than the Young's modulus selected for the core or, especially, for the crown.This research is supported by Universitat Jaume I through Project
P1·1B2012-10
- …