53 research outputs found

    Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel

    Get PDF
    Fernando D. González-Nilo and Wendy González. Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Talca 346-0000, Chile.Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein.PNAS Sponsored This article contains supporting information online at www.pnas.org/cgi/content/full/0606173104/DC1

    In Silico Analysis of Putative Paralytic Shellfish Poisoning Toxins Export Proteins in Cyanobacteria

    Get PDF
    Lopez-Cortes, XA (Lopez-Cortes, Xaviera A.) Univ Talca, Nanobiotechnol Div, Fraunhofer Chile Res Fdn, Ctr Syst Biotechnol, Talca, Chile.Paralytic shellfish poisoning toxins (PSTs) are a family of more than 30 natural alkaloids synthesized by dinoflagellates and cyanobacteria whose toxicity in animals is mediated by voltage-gated Na+ channel blocking. The export of PST analogues may be through SxtF and SxtM, two putative MATE (multidrug and toxic compound extrusion) family transporters encoded in PSTs biosynthetic gene cluster (sxt). sxtM is present in every sxt cluster analyzed; however, sxtF is only present in the Cylindrospermopsis-Raphidiopsis clade. These transporters are energetically coupled with an electrochemical gradient of proton (H+) or sodium (Na+) ions across membranes. Because the functional role of PSTs remains unknown and methods for genetic manipulation in PST-producing organisms have not yet been developed, protein structure analyses will allow us to understand their function. By analyzing the sxt cluster of eight PST-producing cyanobacteria, we found no correlation between the presence of sxtF or sxtM and a specific PSTs profile. Phylogenetic analyses of SxtF/M showed a high conservation of SxtF in the Cylindrospermopsis-Raphidiopsis clade, suggesting conserved substrate affinity. Two domains involved in Na+ and drug recognition from NorM proteins (MATE family) of Vibrio parahaemolyticus and V. cholerae are present in SxtF/M. The Na+ recognition domain was conserved in both SxtF/M, indicating that Na+ can maintain the role as a cation anti-transporter. Consensus motifs for toxin binding differed between SxtF and SxtM implying differential substrate binding. Through protein modeling and docking analysis, we found that there is no marked affinity between the recognition domain and a specific PST analogue. This agrees with our previous results of PST export in R. brookii D9, where we observed that the response to Na+ incubation was similar to different analogues. These results reassert the hypothesis regarding the involvement of Na+ in toxin export, as well as the motifs L(398)XGLQD(403) (SxtM) and L(390)VGLRD(395) (SxtF) in toxin recognition

    Stretch-induced activation of pannexin 1 channels can be prevented by pka-dependent phosphorylation

    Get PDF
    Indexación ScopusPannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity—measured by changes in DAPI uptake—of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water–lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit. © 2020, MDPI AG. All rights reserved.https://www.mdpi.com/1422-0067/21/23/918

    Novel TRPV1 Channel Agonists With Faster and More Potent Analgesic Properties Than Capsaicin

    Get PDF
    Indexación: Scopus.The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects. © Copyright © 2020 Duarte, Cáceres, Sepúlveda, Arriagada, Olivares, Díaz-Franulic, Stehberg and González-Nilo.https://www.frontiersin.org/articles/10.3389/fphar.2020.01040/ful

    Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures

    Get PDF
    High order oligomers are crucial for normal cell physiology, and protein function perturbed by missense mutations underlies several autosomal dominant diseases. Dynamin-2 is one of such protein forming helical oligomers that catalyze membrane fission. Mutations in this protein, where R465W is the most frequent, cause dominant centronuclear myopathy, but the molecular mechanisms underpinning the functional modifications remain to be investigated. To unveil the structural impact of this mutation in dynamin-2, we used full-atom molecular dynamics simulations and coarse-grained models and built dimers and helices of wild-type (WT) monomers, mutant monomers, or both WT and mutant monomers combined. Our results show that the mutation R465W causes changes in the interactions with neighbor amino acids that propagate through the oligomer. These new interactions perturb the contact between monomers and favor an extended conformation of the bundle signaling element (BSE), a dynamin region that transmits the conformational changes from the GTPase domain to the rest of the protein. This extended configuration of the BSE that is only relevant in the helices illustrates how a small change in the microenvironment surrounding a single residue can propagate through the oligomer structures of dynamin explaining how dominance emerges in large protein complexes. © 2020, The Author(s).Indexación Scopushttps://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-020-75216-

    Gating of a pH-Sensitive K2P Potassium Channel by an Electrostatic Effect of Basic Sensor Residues on the Selectivity Filter

    Get PDF
    K+ channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K2P K+ channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pKa of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pHo) sensor in the background of a pHo-insensitive TASK-3 channel, which leads to the restitution of pHo-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pHo sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K+ permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pHo sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K2P channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pHo. Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pHo-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter

    Relevance of phenylalanine 216 in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn(II)

    No full text
    Fernando D. González-Nilo. Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn2+ as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. (1997) Nature Struct. Biol. 4, 990–994] shows that Lys213 is one of the ligands to Mn2+ at the enzyme active site. Coordination of Mn2+ to a lysyl residue is not common and suggests a low pK a value for the ε-NH2 group of Lys213. In this work, we evaluate the role of neighboring Phe216 in contributing to provide a low polarity microenvironment suitable to keep the ε-NH2 of Lys213 in the unprotonated form. Mutation Phe216Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn2+, suggesting an increase of the pK a of Lys213. In agreement with this interpretation, theoretical calculations indicate an alkaline shift of 2.8 pH units in the pK a of the ε-amino group of Lys213 upon Phe216Tyr mutation

    Structure-antioxidant activity relationships of flavonoids isolated from the resinous exudate of Heliotropium sinuatum

    No full text
    González-Nilo,F. Centro de Bioinformática, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile.Relation ships between the structural characteristics of flavonoids isolated from the resinous exudate of Heliotropium sinuatum and their antioxidant activity were studied. Radical formation energies, DeltaH of dehydrogenation and spin densities were calculated using DFT methods (B3LYP/6-31G*). Results show that studied flavonoids can be divided into two sets according to their activity. It has been found that antioxidant activity depends both on substitution pattern of hydroxyl groups of the flavonoid skeleton and the presence of an unsaturation at the C2-C3 bond. A good tendency between DeltaH of dehydrogenation and antioxidant activity was establishe

    Molecular dynamics simulation of the aqueous solvation shell of cellulose and xanthate ester derivatives

    No full text
    Gonzalo Riadi, Fernando González-Nilo. Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Casilla 721, Talca, Chile.MD simulations of a pentasaccharide having D-glucopyranoside residues connected by (14)- glycosidic linkages, as a model of cellulose solvated in water, were carried out comparing the solvation of the hydroxyl group at C2 of the central ring of the pentamer and that of a single glucopyranose ring. MD simulations of 10 nsec were carried under NPT and periodic boundary conditions at 298 K and 1 atm. Explicit solvent (TIP3) and the force field CHARMM27 (modified for xanthate ester derivatives) were used in the molecular dynamics simulations. RDF calculations with respect to O2 of the central ring of the pentamer showed a well structured first solvation shell followed by secondary shells. When comparing the simulations of the pentamer to a single glucopyranose ring, it was observed that the solvation of O2 was lower for one repetitive unit, indicating that the pentamer had a stronger H-bond structure of water around O2 due to the cooperative effect of the neighboring residues. When the O2 of the central ring of the pentamer was substituted by a p-nitrobenzylxanthate moiety (pentXNB) there was a strong decrease in the hydration of the substituted O2 but the carbon and the sulfur of the thiocarbonyl group were clearly hydrated compared to the sulfur bridge. The global minimum energy conformation showed the p-nitrobenzyl group folded over the neighboring glucose ring. However, the simulations showed that the XNB group oscillates over the pentamer in periods of ca. 3000 psec

    Gating of two-pore domain K+ channels by extracellular pH

    No full text
    M.I. Niemeyer*, F.D. González-Nilo†, L. Zúñiga*, W. González†, L.P. Cid* and F.V. Sepúlveda* *CECS (Centro de Estudios Científicos), Av. Arturo Prat 514, Valdivia, Chile, †Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Talca, Chile, and ‡Universidad Austral de Chile, Valdivia, ChilePotassium channels have a conserved selectivity filter that is important in determining which ions are conducted and at what rate. Although K+ channels of different conductance characteristics are known, they differ more widely in the way their opening and closing, the gating, is governed. TASK and TALK subfamily proteins are two-pore region KCNK K+ channels gated open by extracellular pH. We discuss the mechanism for this gating in terms of electrostatic effects on the pore changing the occupancy and open probability of the channels in a way reminiscent of C-type inactivation gating at the selectivity filter. Essential to this proposed mechanism is the replacement of two highly conserved aspartate residues at the pore mouth by asparagine or histidine residues in the TALK and TASK channels
    • …
    corecore