23 research outputs found

    SPASMOLYTIC, ANTI-INFLAMMATORY, AND ANTIOXIDANT ACTIVITY OF SALVIA GESNERIFLORA LINDLEY

    Get PDF
    Background: Salvia gesneriflora Lindley is employed in traditional Mexican medicine for the treatment of several diseases. Materials and Methods: The chromatographic profile of three extracts (SgH, SgD and SgM) of this plant allowed the identification of 11 components in SgH, the presence of rosmarinic (1), chlorogenic (2) and caffeic (3) acids and quercetin glucoside (4) in SgM and of ursolic acid (5) in SgD. The spasmolytic (electrically induced contractions of guinea-pig ileum), anti-inflammatory (edema in mouse ear) and antioxidant potential (DPPH, ABTS and FRAP assays) of the extracts were evaluated. Results: SgM showed the highest percentage of relaxation (80.67 ± 1.633%) with no significant difference (

    Chemical Constituents and Their Production in Mexican Oaks (Q. Rugosa, Q. Glabrescens and Q. Obtusata)

    No full text
    Mexico is considered one of the main regions of diversification of the genus Quercus (oaks). Oak species are one of the most important tree groups, particularly in temperate forests, due to its diversity and abundance. Some studies have shown that oak contains specialized metabolites with medicinal importance. In this work, the acetonic extract from leaves of three Mexican oaks (Quercus rugosa, Q. glabrescens, and Q. obtusata) was separated using thin-layer chromatography and column chromatography. Chemical identification of the major compounds was determined using high-performance liquid chromatography and nuclear magnetic resonance. Nineteen compounds were identified, three belonging to the terpenoid family (ursolic acid, β−amyrin, and β−sitosterol) and 16 from the phenolic family. Of the isolated compounds, seven are new reports for oak species (scopoletin, ursolic acid, β-amyrin, luteolin−7−O−glucoside, kaempferol−3−O−sophoroside, kaempferol−3−O−glucoside, and kaempferol−3−O−sambubioside). More compounds were identified in Q. rugosa followed by Q. glabrescens and then Q. obtusata. The characterization of specialized metabolites in oak species is relevant, from both phytocentric and anthropocentric perspectives

    Spasmolytic, anti-inflammatory, and antioxidant activities of Salvia gesneriflora Lindley

    Get PDF
    Background: Salvia gesneriflora Lindley is employed in traditional Mexican medicine for the treatment of several diseases. This work reports the spasmolytic, anti-inflammatory and antioxidant activities of salvia gesnerifloraMaterials and Methods: The chromatographic profile of three extracts (SgH, SgD and SgM) of this plant allowed the identification of 11 components in SgH, the presence of rosmarinic (1), chlorogenic (2) and caffeic (3) acids and quercetin glucoside (4) in SgM and of ursolic acid (5) in SgD. The spasmolytic (electrically-induced contractions of guinea-pig ileum), anti-inflammatory (edema in mouse ear) and antioxidant potential (DPPH, ABTS and FRAP assays) of the extracts were evaluated.Results: SgM showed the highest percentage of relaxation (80.67 ± 1.633%) with no significant difference (p<0.05) when compared to the reference drug employed (Papaverine, 76.16 ± 2.44%), the EC50 was 66.89 ± 1.6 μg/mL, respectively for SgH and 26.88 ± 1.9 μg/mL for Papaverine. Antiinflammatory activity was 71.12 ± 4.9% for SgH, an effect which is similar to that of Indomethacin (reference drug) at the same dose (75.24 ± 2.4%). In the DPPH test, SsM reached the least CI50 (1.16±1.08 μg/mL). For ABTS, SgH reached the least CI50 (1.73 ± 0.5 μg/mL) and for the FRAP assay, SgD showed the highest reductive capacity (1,782.08 ± 2.1 equivalent mM of FeSO4).Conclusion: S. gesneriflora extracts exhibited spasmolytic, anti-inflammatory and antioxidant activities; thus serving as co-adjuvants with regard to knowledge in the traditional medicine of this plant species and its application’s potential in other fields of pharmacy and foods.Keywords: Salvia gesneriflora Lindley, spasmolytic, spasmodic, anti-inflammatory, antioxidant activit

    Effect of Tecoma stans (L.) Juss. ex Kunth in a Murine Model of Metabolic Syndrome

    No full text
    Metabolic syndrome is a constellation of abnormalities related to insulin resistance with an unfortunately high prevalence worldwide. Tecoma stans (L.) Juss. Ex Kunth. is a well-known medicinal plant that has been studied in several biological models related to diabetes mellitus. The aim of this study was to evaluate the effects of T. stans on a hypercaloric diet-induced metabolic syndrome model. An organic fraction obtained using liquid–liquid separation from the hydroalcoholic extract of T. stans and four subfractions of this organic fraction were administered for ten weeks to C57BL6J male mice previously fed with a hypercaloric diet. The hypercaloric diet caused changes in glucose levels (from 65.3 to 221.5 mg/dL), body weight (31.3 to 42.2 g), triglycerides (91.4 to 177.7 mg/dL), systolic (89.9 to 110.3 mmHg) and diastolic (61.6 to 73.7 mg/dL) blood pressure, and insulin resistance (4.47 to 5.16). Treatment with T. stans resulted in improvements in triglycerides (83.4–125.0 mg/dL), systolic blood pressure (75.1–91.8 mmHg), and insulin resistance (4.72–4.93). However, the organic fraction and hydroalcoholic extract produced a better response in diastolic blood pressure (52.8–56.4 mmHg). Luteolin, apigenin, and chrysoeriol were the major constituents in the most active subfractions. Treatment with T. stans, particularly a luteolin-rich organic fraction, achieved an improvement in metabolic syndrome alterations

    Pharmacokinetics and Tissue Distribution of Coumarins from Tagetes lucida in an LPS-Induced Neuroinflammation Model

    No full text
    Tagetes lucida has been widely used as a folk remedy in illnesses associated with the central nervous system and inflammatory ailments. Among the chemical compounds that stand out in the plant against these conditions are coumarins, such as 7-O-prenylscopoletin (PE), scoparone (SC), dimethylfraxetin (DF), herniarin (HR), and 7-O-prenylumbelliferone (PU), considered potential anti-neuroinflammatory compounds. Therefore, the relationship between the therapeutic effect and the dose can be evaluated through pharmacokinetic–pharmacodynamic (PK–PD) studies under a model of neuroinflammation induced by lipopolysaccharide (LPS). Nonetheless, accomplishing those studies requires an accurate and robust analytical method for the detection of these compounds in different biological matrices of interest. Due to the above, in the present study, a bioanalytical method was established by HPLC–DAD-UV for the simultaneous quantification of the coumarins present in the hexane extract of T. lucida, which was able to determine the temporal concentration profiles of each of the coumarins in the plasma, brain, kidney, and spleen samples of healthy and damaged mice. Coumarins showed an increase in plasma concentrations of up to three times in the neuroinflammation model, compared to healthy mice, so it was possible to quantify the therapeutic agents in the main target organ, the brain. The ability of compounds to cross the blood–brain barrier is an advantage in the treatment of diseases associated with neuroinflammation processes that can be studied in future PK–PD evaluations

    Homoisoflavonoids and Chalcones Isolated from Haematoxylum campechianum L., with Spasmolytic Activity

    No full text
    Haematoxylum campechianum is a medicinal plant employed as an astringent to purify the blood and to treat stomach problems such as diarrhea and dysentery. A bio-guided chemical fractionation of the methanolic extract obtained from this plant allowed for the isolation of five compounds: two chalcones known as sappanchalcone (1); 3-deoxysappanchalcone (2); three homoisoflavonoids known as hematoxylol A (3); 4-O-methylhematoxylol (4); and, hematoxin (5). The spasmolytic activity was determined in an in vitro model (electrically induced contractions of guinea pig ileum), and allowed to demonstrate that the methanolic extract (EC50 = 62.11 ± 3.23) fractions HcF7 (EC50 = 61.75 ± 3.55) and HcF9 (EC50 = 125.5 ± 10.65) and compounds 1 (EC50 = 16.06 ± 2.15) and 2 (EC50 = 25.37 ± 3.47) of Haematoxylum campechianum present significant relaxing activity as compared to papaverine (EC50 = 20.08 ± 2.0) as a positive control

    In Vivo Gastroprotective and Antidepressant Effects of Iridoids, Verbascoside and Tenuifloroside from <i>Castilleja tenuiflora</i> Benth

    No full text
    Stress is an important factor in the etiology of some illnesses such as gastric ulcers and depression. Castilleja tenuiflora Benth. (Orobanchaceae) is used in Mexican traditional medicine for the treatment of gastrointestinal diseases and nervous disorders. Previous studies indicated that organic extracts from C. tenuiflora had gastroprotective effects and antidepressant activity. In this study, we aimed to evaluate the gastroprotective and antidepressant activity of fractions and isolated compounds from the methanolic extract (MECt) of C. tenuiflora in stressed mice. Chromatographic fractionation of MECt produced four fractions (FCt-1, FCt-2, CFt-3, and FCt-4) as well as four bioactive compounds which were identified using TLC, HPLC and NMR analyses. The cold restraint stress (CRS)-induced gastric ulcer model followed by the tail suspension test and the forced swim test were used to evaluate the gastroprotective effect and antidepressant activity of the extract fractions. FCt-2 and FCt-3 at 100 mg/kg had significant gastroprotective and antidepressant effects. All isolated compounds (verbascoside, teniufloroside and mixture geniposide/ musseanoside) displayed gastroprotective effects and antidepressant activity at 1 or 2 mg/kg. The above results allow us to conclude that these polyphenols and iridoids from C. tenuiflora are responsible for the gastroprotective and antidepressant effects

    Anti-Inflammatory Activity of a Polymeric Proanthocyanidin from Serjania schiedeana

    No full text
    The ethyl acetate extract (SsAcOEt) from Serjania schiedeana, select fractions (F-6, F-12, F-13, F-14), and one isolated compound, were evaluated in 12-O-tetradecanoylphorbol 13-acetate (TPA) ear edema and kaolin/carrageenan (KC)-induced monoarthritis assays. SsEtOAc induced edema inhibition of 90% (2.0 mg/ear), fractions showed activity within a range of 67–89%. Due to the fact F-14 showed the highest effect, it was separated, yielding a proanthocyanidin-type called epicatechin–(4β → 8)–epicatechin–(4β → 8, 2β → O → 7) epicatechin (ETP). This compound (2.0 mg/ear) provoked 72% of edema inhibition (ED50 = 0.25 mg/ear, Emax = 52.9%). After 9 days of treatment, joint inflammation was decreasing, and on the last day, SsEtOAc (400 mg/kg), F-14 and ETP (10 mg/kg), SsEtOAc (200 mg/kg), methotrexate (MTX) 1.0 mg/kg and meloxicam (MEL) 1.5 mg/kg, produced an inhibition articulate edema of 94, 62, 36, 21, 80, and 54%, respectively. In the joint, pro-inflammatory molecules were elevated in animals without treatment (vehicle group, VEH). Treatments from S. schiedeana induced a decrease in the concentration of interleukin (IL)-1β, IL-17, and IL-6, and SsEtOAc at a higher dose diminished tumor necrosis factor (TNF-α). IL-10 and IL-4 were fewer in the VEH group in comparison with healthy mice; the animals with treatments from S. schiedeana induced an increment in the levels of these cytokines in joint and spleen

    <i>Porophyllum</i> Genus Compounds and Pharmacological Activities: A Review

    No full text
    The genus Porophyllum (family Asteraceae) is native to the western hemisphere, growing in tropical and subtropical North and South America. Mexico is an important center of diversification of the genus. Plants belong of genus Porophyllum have been used in Mexican traditional medicine to treat kidney and intestinal diseases, parasitic, bacterial, and fungal infections and anti-inflammatory and anti-nociceptive activities. In this sense, several trials have been made on its chemical and in vitro and in vivo pharmacological activities. These studies were carried on the extracts and isolated compounds and support most of their reported uses in folk medicine as antifungal, antileishmanial, anti-inflammatory, anti-nociceptive and burn repair activities, and as a potential source of new class of insecticides. Bio guided phytochemical studies showed the isolation of thiophenes, terpenes and phenolics compounds, which could be responsible for the pharmacological activities. However, more pre-clinical assays that highlight the mechanisms of action of the compounds involved in pharmacological function are lacking. This review discusses the current knowledge of their chemistry, in vitro and in vivo pharmacological activities carried out on the plants belonging to the Porophyllum genus

    Porophyllum Genus Compounds and Pharmacological Activities: A Review

    No full text
    The genus Porophyllum (family Asteraceae) is native to the western hemisphere, growing in tropical and subtropical North and South America. Mexico is an important center of diversification of the genus. Plants belong of genus Porophyllum have been used in Mexican traditional medicine to treat kidney and intestinal diseases, parasitic, bacterial, and fungal infections and anti-inflammatory and anti-nociceptive activities. In this sense, several trials have been made on its chemical and in vitro and in vivo pharmacological activities. These studies were carried on the extracts and isolated compounds and support most of their reported uses in folk medicine as antifungal, antileishmanial, anti-inflammatory, anti-nociceptive and burn repair activities, and as a potential source of new class of insecticides. Bio guided phytochemical studies showed the isolation of thiophenes, terpenes and phenolics compounds, which could be responsible for the pharmacological activities. However, more pre-clinical assays that highlight the mechanisms of action of the compounds involved in pharmacological function are lacking. This review discusses the current knowledge of their chemistry, in vitro and in vivo pharmacological activities carried out on the plants belonging to the Porophyllum genus
    corecore