23,089 research outputs found

    Viscoelastic model for the dynamic structure of binary systems

    Full text link
    This paper presents the viscoelastic model for the Ashcroft-Langreth dynamic structure factors of liquid binary mixtures. We also provide expressions for the Bhatia-Thornton dynamic structure factors and, within these expressions, show how the model reproduces both the dynamic and the self-dynamic structure factors corresponding to a one-component system in the appropriate limits (pseudobinary system or zero concentration of one component). In particular we analyze the behavior of the concentration-concentration dynamic structure factor and longitudinal current, and their corresponding counterparts in the one-component limit, namely, the self dynamic structure factor and self longitudinal current. The results for several lithium alloys with different ordering tendencies are compared with computer simulations data, leading to a good qualitative agreement, and showing the natural appearance in the model of the fast sound phenomenon.Comment: 20 pages, 19 figures, submitted to PR

    Integral field observations of the blue compact galaxy Haro14. Star formation and feedback in dwarf galaxies

    Full text link
    (Abridged) Low-luminosity, gas-rich blue compact galaxies (BCG) are ideal laboratories to investigate many aspects of the star formation in galaxies. We study the morphology, stellar content, kinematics, and the nebular excitation and ionization mechanism in the BCG Haro 14 by means of integral field observations with VIMOS in the VLT. From these data we build maps in continuum and in the brighter emission lines, produce line-ratio maps, and obtain the velocity and velocity dispersion fields. We also generate the integrated spectrum of the major HII regions and young stellar clusters identified in the maps to determine reliable physical parameters and oxygen abundances. We find as follows: i) the current star formation in Haro 14 is spatially extended with the major HII regions placed along a linear structure, elongated in the north-south direction, and in a horseshoe-like curvilinear feature that extends about 760 pc eastward; the continuum emission is more concentrated and peaks close to the galaxy center; ii) two different episodes of star formation are present: the recent starburst, with ages ≤\leq 6 Myrs and the intermediate-age clusters, with ages between 10 and 30 Myrs; these stellar components rest on a several Gyr old underlying host galaxy; iii) the Hα\alpha/Hβ\beta pattern is inhomogeneous, with excess color values varying from E(B-V)=0.04 up to E(B-V)=1.09; iv) shocks play a significant role in the galaxy; and v) the velocity field displays a complicated pattern with regions of material moving toward us in the east and north galaxy areas. The morphology of Haro 14, its irregular velocity field, and the presence of shocks speak in favor of a scenario of triggered star formation. Ages of the knots are consistent with the ongoing burst being triggered by the collective action of stellar winds and supernovae originated in the central clusters.Comment: 18 pages, 17 figures. Accepted for publication in A&

    Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Full text link
    (Abridged) Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy with VIMOS at the Very Large Telescope to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. We found that Tololo 1937-423 is currently undergoing an extended starburst, with nine major HαH\alpha clumps. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reaches its maximum roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis. The morphology of the galaxy and the two different episodes of SF suggest a scenario of triggered (induced by supernova shock waves) SF acting in Tololo 1937-423. The inferred ages for the different SF episodes (~13-80 Myr for the central post-starburst and 5-7 Myr for the ongoing SF) are consistent with triggered SF, with the most recent SF episode caused by the collective effect of stellar winds and supernova explosions from the central post-starburst. The velocity dispersion pattern, with higher velocity dispersions found at the edges of the SF regions, and shocked regions in the galaxy, also favor this scenario.Comment: 16 pages, 18 figures. Accepted for publication in A&

    Generalized Galilean Algebras and Newtonian Gravity

    Get PDF
    The non-relativistic versions of the generalized Poincar\'{e} algebras and generalized AdSAdS-Lorentz algebras are obtained. This non-relativistic algebras are called, generalized Galilean algebras type I and type II and denoted by GBn\mathcal{G}\mathfrak{B}_{n} and GLn\mathcal{G}\mathfrak{L}_{_{n}} respectively. Using a generalized In\"{o}n\"{u}--Wigner contraction procedure we find that the generalized Galilean algebras type I can be obtained from the generalized Galilean algebras type II. The SS-expansion procedure allows us to find the GB5\mathcal{G}\mathfrak{B}_{_{5}} algebra from the Newton--Hooke algebra with central extension. The procedure developed in Ref. \cite{newton} allow us to show that the non-relativistic limit of the five dimensional Einstein--Chern--Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.Comment: 16 pages, no figures in 755 (2016) 433-43

    Berry-phase blockade in single-molecule magnets

    Full text link
    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that in the case of incoherent spin states it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.Comment: 4 pages, Revtex 4, 4 EPS figure

    Geometrical resonance in spatiotemporal systems

    Full text link
    We generalize the concept of geometrical resonance to perturbed sine-Gordon, Nonlinear Schrödinger and Complex Ginzburg-Landau equations. Using this theory we can control different dynamical patterns. For instance, we can stabilize breathers and oscillatory patterns of large amplitudes successfully avoiding chaos. On the other hand, this method can be used to suppress spatiotemporal chaos and turbulence in systems where these phenomena are already present. This method can be generalized to even more general spatiotemporal systems.Comment: 2 .epl files. Accepted for publication in Europhysics Letter

    Propagating, evanescent, and localized states in carbon nanotube-graphene junctions

    Get PDF
    We study the electronic structure of the junctions between a single graphene layer and carbon nanotubes, using a tight-binding model and the continuum theory based on Dirac fermion fields. The latter provides a unified description of different lattice structures with curvature, which is always localized at six heptagonal carbon rings around each junction. When these are evenly spaced, we find that it is possible to curve the planar lattice into armchair (6n,6n) as well as zig-zag (6n,0) nanotubes. We show that the junctions fall into two different classes, regarding the low-energy electronic behavior. One of them, constituted by the junctions made of the armchair nanotubes and the zig-zag (6n,0) geometries when n is a multiple of 3, is characterized by the presence of two quasi-bound states at the Fermi level, which are absent for the rest of the zig-zag nanotubes. These states, localized at the junction, are shown to arise from the effective gauge flux induced by the heptagonal carbon rings, which has a direct reflection in the local density of states around the junction. Furthermore, we also analyze the band structure of the arrays of junctions, finding out that they can also be classified into two different groups according to the low-energy behavior. In this regard, the arrays made of armchair and (6n,0) nanotubes with n equal to a multiple of 3 are characterized by the presence of a series of flat bands, whose number grows with the length of the nanotubes. We show that such flat bands have their origin in the formation of states confined to the nanotubes in the array. This is explained in the continuum theory from the possibility of forming standing waves in the mentioned nanotube geometries, as a superposition of modes with opposite momenta and the same quantum numbers under the C_6v symmetry of the junction.Comment: 13 pages, 8 figure

    Four dimensional Lie symmetry algebras and fourth order ordinary differential equations

    Full text link
    Realizations of four dimensional Lie algebras as vector fields in the plane are explicitly constructed. Fourth order ordinary differential equations which admit such Lie symmetry algebras are derived. The route to their integration is described.Comment: 12 page
    • …
    corecore