40,047 research outputs found
Cooper-pair propagation and superconducting correlations in graphene
We investigate the Cooper-pair propagation and the proximity effect in
graphene under conditions in which the distance L between superconducting
electrodes is much larger than the width W of the contacts. In the case of
undoped graphene, supercurrents may exist with a spatial decay proportional to
W^2/L^3. This changes upon doping into a 1/L^2 behavior, opening the
possibility to observe a supercurrent over length scales above 1 micron at
suitable doping levels. We also show that there is in general a crossover
temperature T ~ v_F/k_B L that marks the onset of the strong decay of the
supercurrent, and that corresponds to the scale below which the Cooper pairs
are not disrupted by thermal effects during their propagation.Comment: 5 pages, 2 figures; corrected discussio
Combinatorics of lattice paths with and without spikes
We derive a series of results on random walks on a d-dimensional hypercubic
lattice (lattice paths). We introduce the notions of terse and simple paths
corresponding to the path having no backtracking parts (spikes). These paths
label equivalence classes which allow a rearrangement of the sum over paths.
The basic combinatorial quantities of this construction are given. These
formulas are useful when performing strong coupling (hopping parameter)
expansions of lattice models. Some applications are described.Comment: Latex. 25 page
Geometrical resonance in spatiotemporal systems
We generalize the concept of geometrical resonance to perturbed sine-Gordon,
Nonlinear Schrödinger and Complex Ginzburg-Landau equations. Using this
theory we can control different dynamical patterns. For instance, we can
stabilize breathers and oscillatory patterns of large amplitudes successfully
avoiding chaos. On the other hand, this method can be used to suppress
spatiotemporal chaos and turbulence in systems where these phenomena are
already present. This method can be generalized to even more general
spatiotemporal systems.Comment: 2 .epl files. Accepted for publication in Europhysics Letter
Making Sustainable Agriculture Real in CAP 2020: The Role of Conservation Agriculture
Europe is about to redefine its Common Agriculture Policy (CAP) for the near future. The question is whether this redefinition is more a fine-tuning of the existing CAP or whether thorough changes can be expected. Looking back to the last revision of CAP the most notable change is, undoubtedly, the concern about EU and global food security. The revival of the interest in agricultural production already became evident during the Health Check as a consequence of climbing commodity prices in 2007/08. It is therefore no surprise that “rising concerns regarding both EU and global food security” is the first topic to appear in the list of justifications for the need for a CAP reform. Other challenges mentioned in this list such as sustainable management of natural resources, climate change and its mitigation, improvement of competitiveness to withstand globalization and rising price volatility, etc., while not new are considered worthwhile enough to be maintained and reappraised
Fast-to-Alfv\'en mode conversion mediated by Hall current. II Application to the solar atmosphere
Coupling between fast magneto-acoustic and Alfv\'en waves can be observe in
fully ionized plasmas mediated by stratification and 3D geometrical effects. In
Paper I, Cally & Khomenko (2015) have shown that in a weakly ionized plasma,
such as the solar photosphere and chromosphere, the Hall current introduces a
new coupling mechanism. The present study extends the results from Paper I to
the case of warm plasma. We report on numerical experiments where mode
transformation is studied using quasi-realistic stratification in thermodynamic
parameters resembling the solar atmosphere. This redresses the limitation of
the cold plasma approximation assumed in Paper I, in particular allowing the
complete process of coupling between fast and slow magneto-acoustic modes and
subsequent coupling of the fast mode to the Alfv\'en mode through the Hall
current. Our results confirm the efficacy of the mechanism proposed in Paper I
for the solar case. We observe that the efficiency of the transformation is a
sensitive function of the angle between the wave propagation direction and the
magnetic field, and of the wave frequency. The efficiency increases when the
field direction and the wave direction are aligned for increasing wave
frequencies. After scaling our results to typical solar values, the maximum
amplitude of the transformed Alfv\'en waves, for a frequency of 1 Hz,
corresponds to an energy flux (measured above the height of peak Hall coupling)
of , based on an amplitude of 500 at
, which is sufficient to play a major role in both quiet and active
region coronal heating
Phase diagram as a function of temperature and magnetic field for magnetic semiconductors
Using an extension of the Nagaev model of phase separation (E.L. Nagaev, and
A.I. Podel'shchikov, Sov. Phys. JETP, 71 (1990) 1108), we calculate the phase
diagram for degenerate antiferromagnetic semiconductors in the T-H plane for
different current carrier densities. Both, wide-band semiconductors and
'double-exchange' materials, are investigated.Comment: 5 pages, 6 figures, RevTex, Accepted for publication in PR
Resonance phenomena of a solitonlike extended object in a bistable potential
We investigate the dynamics of a soliton that behaves as an extended
particle. The soliton motion in an effective bistable potential can be chaotic
in a similar way as the Duffing oscillator. We generalize the concept of
geometrical resonance to spatiotemporal systems and apply it to design a
nonfeedback mechanism of chaos control using localized perturbations.We show
the existence of solitonic stochastic resonance.Comment: 3 postscript figure
- …