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Cooper-pair propagation and superconducting correlations in graphene
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We investigate the Cooper-pair propagation and the Josephson effect in graphene under conditions in which
the distance L between superconducting electrodes is much larger than the width W of the contacts. In the case
of undoped graphene, we show that supercurrents may exist with a spatial decay proportional to W?/L3,
reminiscent of the behavior of the critical current in disordered normal metals. We observe that there is in

general a crossover temperature 7"~ v/ kgL that marks the onset of the strong decay of the supercurrent and
that corresponds to the scale above which the Cooper pairs are disrupted by thermal effects during their
propagation. We also show that the spatial decay of the critical current changes upon doping into a 1/L?
behavior, opening the possibility to observe a supercurrent over length scales above 1 wm at suitable doping

levels.
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The recent interest in the physics of graphene has arisen
from the observation of a number of novel electronic
properties,’> which are the consequence of the relativistic-
like character of the electron quasiparticles. This is certainly
the case of the anomalous quantization of the Hall
conductivity,3‘5 as well as of the existence of a finite lower
bound in the conductivity at the charge neutrality point.*%-8
The graphene system is unique in that the low-energy exci-
tations have conical dispersion around discrete Fermi points,
being therefore governed by a Dirac equation for massless
chiral particles. The appearance of an additional pseudospin
quantum number intrinsic to the Dirac spectrum has led to
propose other unconventional effects, such as the selective
transmission of electrons through n-p junctions® or a peculiar
form of Andreev reflection at the metal-superconductor inter-
face in graphene.!”

Recently, the proximity effect has been investigated in
graphene in two different experiments.'!!> In both of them, a
two-dimensional (2D) carbon layer has been contacted with
superconducting electrodes, though the size and aspect ratio
of the respective samples have been quite different in the two
cases. Thus, while the separation of the electrodes in the
experiment of Ref. 11 appears to be of the order of
~0.5 wm, the distance between them in Ref. 12 seems to
have a minimum value of about 2.5 um. This may explain
why a supercurrent has been measured between the elec-
trodes in the first case, while the most relevant observation in
the second experiment has been an abrupt drop in the resis-
tance, below the critical temperature of the superconducting
electrodes.

This crucial dependence on the distance between the elec-
trodes may be, however, somewhat surprising, taking into
account that supercurrents have been measured in carbon
nanotubes placed between superconducting contacts, with
nanotube lengths as large as =~1.7 um.'> It becomes then
pertinent to analyze the proximity effect in graphene, espe-
cially for large separation between the superconducting elec-
trodes, in order to find out the features related to the 2D
character of the material.

The Josephson effect has been studied before in graphene
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strips with length L small relative to their width and the
superconducting coherence length.!* Here, we will face the
opposite situation in which the relevant signatures are dic-
tated by the propagation of the Cooper pairs in graphene. In
this sense, we will adopt an approach complementary to that
of the usual description in terms of Andreev reflection at the
metal-superconductor interface. The analysis of the Cooper-
pair propagation will show to be convenient for the discus-
sion of the many-body effects on the supercurrents over long
distances, as the diagrammatics for the propagation of the
Cooper pairs allow easily the introduction of interactions and
thermal effects. Our conclusions will coincide with one as-
pect stressed in Ref. 14 regarding the fact that the long-
distance decay of the supercurrents in a clean undoped
graphene layer turns out to be the same as in a disordered
normal metal.'”> On the other hand, the stronger 1/L° decay
that we find, in comparison with the case of carbon nano-
tubes and ribbons, will appear as a consequence of dealing
with the propagation of the Cooper pairs over a large 2D
layer, instead of being constrained within a reduced trans-
verse dimension.

We investigate then the Josephson effect in a 2D graphene
layer, under conditions in which the distance L between the
superconducting electrodes producing the Cooper pairs is
much larger than the width W of the contacts. More specifi-
cally, we will consider that the Hamiltonian for graphene
with superconducting contacts along the coordinates x;=0
and x,=L is given by

H=v, f v (r)e@ . gr(r)

w
+ 2t &Py ) +He (1)
j=12 Jo

(we work throughout the paper in units such that i=1). In
the above expression, o' are different sets of Pauli matrices
for a=1,2,> and a sum is implicit over the index a account-
ing for the two different valleys and corresponding Dirac

©2007 The American Physical Society


https://core.ac.uk/display/80860829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.76.155404

J. GONZALEZ AND E. PERFETTO

spinors W@ at opposite corners K,—K in the graphene Bril-
louin zone. The spinor indices are omitted for simplicity, and
a sum is also implicit over the spin index o. Thus, we are
going to assume that the electron fields Wy and Wy, in the
superconducting electrodes couple with the same amplitude
to the two Dirac points and the two sublattices of the
graphene layer.'® In this sense, we are considering a kind of
ideal contact between graphene and the superconducting
electrodes, which is realized, for instance, when the latter are
on top of the 2D layer preserving the graphene lattice struc-
ture. In the continuum approximation implicit in the model
[Eq. (1)], the interface between graphene and the supercon-
ducting electrodes takes place along a segment of width W in
each case, but we will consider otherwise that the sample of
graphene is 2D, with dimensions much larger than the width
of the contacts in both the transverse and the longitudinal
direction.

For our purposes, it will be enough to describe the super-
conductors in terms of the order parameter A and the normal
density of states p. We are going to deal, in particular, with
the case in which the time of propagation of the Cooper pairs
between the contacts is much larger than 1/|A|. This implies,
equivalently, that the distance L has to be much larger than
the superconducting coherence length & Then, a supercurrent
may arise mainly from processes in which the Cooper pairs
tunnel from one of the superconductors to the 2D layer,
propagating to the other superconducting contact. Under the
assumption of a relative large |A|, we can make the approxi-
mation

(W o(x)y5=im) W _o(x},y3— i) = eXipd(T) — 1),

2)
where the statistical averages, at temperature 7, are taken
over ordered products with respect to imaginary time 7. The
Josephson current /; can be computed as the derivative of the
free energy with respect to the difference y between the re-

spective phases y; and y, of the order parameters in the two
superconductors:

9
I,= Ze&—kBT log(Tr e~H/%sT), (3)
X

By expanding the free energy in the iteration of tunneling
events from the second term of the Hamiltonian in Eq. (1),
we see that the contributions to the Josephson current must
arise from processes connecting the condensates of the two
superconducting electrodes. The lowest nonvanishing order

4

in the current is given by
P kT 14
I~ 2e—kBTt4H dTiJ dy;
Ix i=1 Jo 0
X (W1 1(0,y15=im)Wgy (0,y25= i)
X(TT(0,y15- i) T TV(0,y55- i)
X\P(Tb)(L,y3 = iT3)q’(fb)(L,J’4§— i74))
X(Why ((Lyss— i)Wy |(L,yss—iTy). (4)

We will now take into account the assumption that L>W,
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averaging over the separation of the electrons in the pair
tunneling along the superconducting contact. Making use of
approximation (2) and of the translational invariance in the
variable 7, we obtain the following expression of the maxi-
mum supercurrent I, (critical current):

w W VkgT
I.(T) = 2ep2t4W2f dylf dyzf dr
0 0 0

X(W7(0,,3:00 %70, y,:0)
XWO(L,yy:- i)W L,yy:— i7). (5)

The expression of the Cooper pairs that appear in Eq. (5)
is a short notation for objects that are actually made of the
tensor product of states of the electrons in the pair. The rule
to build the state of the pair has to be consistent with the
form of the tunneling Hamiltonian in Eq. (1), which implies,
in particular, the choice of equal amplitudes for the two sub-
lattices of the graphene layer. If we denote the operators
corresponding to electron states with momentum k projected
on the sublattice A(B) by ‘Ififzr(k)[‘lfglzr(k)], a suitable ex-
pression of the Cooper pair is ,given by’

VWP k) + W RWEP (- K). ©)

This state can be cast in terms of the operators corresponding
to electron states with well-defined energy in the conduction
band, \I'i“zr (k), and in the valence band, \If(_azr(k), given by

T K) = (WP (k) + 2w (k)1 2, (7)
PO k) = (WP (k) - W) (k)1 2, (8)

VO K) = (WK + R R)N2, (9)

VO k) = (TR k) - e PWEE (- K)A2,  (10)
where ¢=arctan(k,/k,). It is easily seen that
TERWO(- k) + 0w (- k)
=V WPk + YTk, (1)

It can be checked that the choice [Eq. (11)] for the state of
the Cooper pairs leads to results that preserve the relativisti-
clike invariance of the theory, which is consistent with our
assumption of ideal contacts to the superconducting elec-
trodes maintaining the graphene lattice structure.

The determination of the critical current is therefore re-
duced to the evaluation of the propagator of the Cooper pairs
in the state given by Eq. (11). The Fourier transform of the
propagator at 7# 0, which we will denote by D(k,i®), can
be obtained from the standard diagrammatics for Dirac fer-
mions. We stress that, for the sake of preserving the relativ-
isticlike invariance, it is convenient to regularize the dia-
grams at high energies by using a method that maintains the
space-time symmetry of the theory, like the analytic continu-
ation in the number of dimensions.'” In particular, the
Cooper-pair propagator can be obtained in the noninteracting
theory from the convolution of two Dirac propagators, and at
T=0, it turns out to be
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FIG. 1. (Color online) Diagrammatic equation for the Cooper-
pair propagator D(k,w), obtained as a sum of the iteration of scat-
tering processes between the electrons in the pair.

1 55—
DOk, 0)|7=- 8—2\’v§k2 -’ (12)
UF

The temperature dependence of the propagator can be ob-
tained using the Matsubara formalism. In the static limit, we
get

DO(k,0) =~

1 S — K|\x(1 -
|k|f dx\x(1 - x) tanh(w)
2'7TUF 0 ZkBT

1 ! vk Vx(1 - x
——2kBTf dxln[Zcosh(M>].

7TUF 0 szT
(13)

The knowledge of the Cooper-pair propagator at zero fre-
quency is enough to compute the critical current in Eq. (5).
Interaction effects can be incorporated by summing up the
different perturbative orders obtained by iteration of the scat-
tering of the particles in the pair, as illustrated in Fig. 1. If we
take an average of the potential V between the particles, we
have that the Cooper-pair propagator can be represented in
the 7T-matrix approximation by

DO k,
Dk, w) = | k)

— . 14
+ VDO (K, ) (14

We remark anyhow that the interaction effects cannot signifi-
cantly affect the propagation of the Cooper pairs at low tem-
peratures. When there is exchange of the valleys in the scat-
tering of the electrons in the pair, the Coulomb potential V-
becomes suppressed by a large momentum transfer 2kp,
down to Vo~ e?/2kg. At the small values of |k| relevant for
the long-distance regime, the denominator in Eq. (14) re-
mains then very close to 1. In the opposite case of no valley
exchange, we observe that at low momentum transfer, VCD(O)
has a relative strength of the order of ~e?/vy. At low ener-
gies, this effective coupling is strongly renormalized, down
to a value which may be about 1 order of magnitude below
the nominal coupling.!® We have checked that, in practice,
this makes the difference between computing the critical cur-
rent [Eq. (5)] from either D(k,0) or D”(k,0) very small at
the relevant temperatures in the experiments (of the order of
~1 K).

It becomes convenient to factor out from Eq. (5) the rela-
tive tunnel conductances of the interfaces, which are each
given by the constant quantity pr>?W/v.'” We will deal then
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FIG. 2. Plot of the critical current IEZD)(T) (in units of
102ev pk.~1.2 uA) for L=5X103/k, (=2.5 um) and W=10?/k,
(=50 nm).

with the intrinsic 2D dependence of the critical current,
which becomes, in terms of the Fourier transform of the
Cooper-pair propagator,

17°X(T) = 2¢ W22 f

dk
— |k|Jo([K|L)D(k,0)e ke,
0 2m

(15)

where k. is a short-distance cutoff that we take in the order of
~1 nm™!. This corresponds to vzk,~ 1 eV, which is the en-
ergy scale below which the Dirac theory applies to graphene.
We stress that this energy is much larger than the thermal
energy at the temperatures relevant for the experiments (of
the order of ~1 K). Moreover, the scale vgk, is also much
larger than the low-energy scale vy/L at which we are going
to compute the propagation of the Cooper pairs. This ex-
plains that, as we have checked explicitly, the results pre-
sented in what follows for the critical currents at 7~ 1 K and
distances well above the nanometer scale are very little sen-
sitive to variations in k., as long as vzk,. remains orders of
magnitude larger than any other energy scale in the model.

The critical current computed from Eq. (15) displays a
number of peculiar features. From the scaling of D©(k,0) in
the zero-temperature limit, it is easily seen that IEZD)(O) must
decay as ~vW?/L? at large separation between the contacts.
Another important property is that there is always a cross-
over temperature T~ ~vy/kgL, which marks the onset of a
power-law decay of the supercurrent at high temperatures.
This is shown in Fig. 2, which represents the behavior of the
critical current as a function of T for L=5X103/k,. and W
=10%/k,, taking k.=2 nm~'. The dependence of IfD)(T) is
qualitatively similar to what is found in carbon nanotubes
with long separation between superconducting contacts.?*2!
The crossover temperature corresponds to the scale at which
the Cooper pairs fail to propagate efficiently between the
electrodes, as they become disrupted along the way by ther-
mal effects.

The different behavior of the supercurrents in graphene
with respect to that in the carbon nanotubes comes from the
scaling with length L at low temperatures. This is given by a
1/L? power-law behavior in graphene, instead of the 1/L
scaling of a noninteracting one-dimensional (1D) system.?’
We may consider, for instance, the sample described in Ref.
12, with an approximate separation between the electrodes

155404-3



J. GONZALEZ AND E. PERFETTO

0.011

0.0001

1.x107¢

1.x1078

50 100 500 1000 5000

L (nm)

FIG. 3. Plot of the zero-temperature critical current IZZD)(O) (in
units of 10 2ev gk, ~ 1.2 pA) as a function of the distance L (keep-
ing W=10?/k.~50 nm) for chemical potentials u=1 meV (full
line) and =10 meV (dotted line). The dashed line corresponds to a
1/L?* decay and it is drawn here as a reference to that power-law
behavior.

L=2.5 um. The plot in Fig. 2 gives the theoretical values of
the critical current, in units of 102evzk,~1.2 uA. We ob-
serve that, in the low-temperature regime to the left of the
crossover, the expected critical currents should have a mag-
nitude IEZD)~ 1073 nA. Such a small scale may explain the
difficulty in establishing a supercurrent in graphene when
there is a separation of the order of microns between the
superconducting electrodes.

On the other hand, the crossover shown in Fig. 2 has a
remarkable correspondence with the abrupt drop in the resis-
tance reported in Ref. 12. This feature has been observed at a
temperature of about 1 K, and it does not seem to bear a
direct relation to the critical temperature 7, (=4 K) of the
superconducting electrodes. We observe that the crossover
displayed in Fig. 2 corresponds to a temperature of about

M
7TUF

DO(k,0) = X

S 8u, | Am,

The slight change produced by the chemical potential in
the infrared behavior of D”(k,0) is enough to modify the
long-distance decay of the supercurrent. We have represented
in Fig. 3 the result of evaluating I(C2D)(O) from Eq. (15) with
the Cooper-pair propagator in Eq. (18). It can be seen that, at
L~vp/p, the power-law decay of the critical current
changes from 1/L? to 1/L%. The supercurrents cannot be en-
hanced anyhow up to the magnitudes that they reach in a 1D
electron system, where the decay is given by a 1/L depen-
dence in the noninteracting theory. However, it may be
worthwhile to explore experimentally the consequences of
doping the graphene layer, up to levels where it can be af-
fordable to measure supercurrents of the order of ~1 nA for

1 (2, 1 .
— k| + ——[k|arcsin| = | - ——u if [k] >2u.
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1.5 K, in fair agreement with the position of the drop mea-
sured experimentally in the resistance. It is therefore quite
likely that this feature may be an indirect signature of the
temperature up to which the Cooper pairs are able to propa-
gate without disruption, along the 2.5-um-long path of the
sample reported in Ref. 12.

The fast decay of the supercurrent computed from Eq.
(15) can be traced back to the vanishing density of states of
graphene at the charge neutrality point. Actually, the form of
the propagator in Eq. (12) is a direct consequence of the
conical dispersion around the Fermi points of graphene. One
can therefore expect important changes in the Cooper-pair
propagation upon doping the electron system. This can be
investigated formally by introducing a finite chemical poten-
tial w, with the aim of shifting the Fermi level away from the
charge neutrality point. At x>0, the Dirac propagator can be
written as??

-1
GOk, 0) = (w+ K)| ————
ko) =(w+vro )[—w2+vik2—ie
ow—-vpk
+i7T(—F||)9(,U«—UF|k|)]’ (16)
UF|k|

which is a convenient alternative form of expressing the
electron propagator
Oe(k) —p) = O(p-ek))

(0) _
G (k’w)_w—s(k)+ie+w—s(k)—ie (17)

for a dispersion with two branches e(k)=zvy|k|. The
Cooper-pair propagator can now be computed from the con-
volution of two Dirac propagators like Eq. (16). The result at
=0 1is

if k| < 2u
(18)

K|

27UE

suitably small values of L, according to the plot shown in
Fig. 3.

We also remark that doping the graphene layer may be the
way to obtain experimental signatures of dynamical super-
conducting correlations. The pertinent approach to address
this question is to deal again with the theory at nonvanishing
chemical potential, starting from the Dirac propagator in Eq.
(16). Computing now the Cooper-pair propagator at real fre-
quency o, the possible superconducting instabilities have to
reflect as singularities in D(0, ), as it happens with the for-
mation of bound electron pairs in the BCS theory.?

The evaluation of the Cooper-pair propagator at chemical
potential x>0 gives the result
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1 1
- -i—w.
27'rv12p'u 87

(19)

2u—w

1
D0, w) =- P log

TUE o)

We may sum up again multiple scattering processes of the
Cooper pairs in the framework of the 7-matrix approxima-
tion. We observe then that D(0, w) has a pole under condi-
tions where the dominant interaction is attractive, such that
V<0. The denominator 1+VD©(0,w) in Eq. (14) vanishes
at values of the frequency w given by the equation

2

|2,u—w|=wexp(M). (20)

oV
There is always a solution of Eq. (20) for w below and close
to 2u when V<<0. Such a frequency marks the formation of
bound electron pairs that may take place for arbitrarily small
values of w, despite the fact that the density of states of
graphene vanishes at @=0.2* The main difference with a con-
ventional Fermi liquid is that the energy scale in front of the
exponential in Eq. (20) may be rather small, of the order of
~2u.

In conclusion, we have studied the Josephson effect in a
2D graphene layer when the distance between the supercon-
ducting contacts is much larger than their width. We have
seen that, in the case of undoped graphene, the supercurrents
have a fast spatial decay, proportional to W2/L3. This strong
dependence on L reminds of the behavior of the critical cur-
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rent in long diffusive junctions.?> The similarity between the
behavior of ballistic graphene and that of a disordered nor-
mal metal has also been noted in the study of transport in
short graphene strips.”!'4

On the other hand, it is unlikely that the experimental
measures may be strongly affected, in general, by disorder in
a graphene layer, since backscattering arises only from
small-range scatterers with a size not larger than the lattice
constant.’® We have actually seen that the results reported in
Ref. 12 are consistent with a crossover to the strong decay of
the critical current at a temperature 7"~ v/kgL, and not at
the much smaller scale given in a diffusive junction in terms
of the diffusion constant D by 7"~ D/kzL>.

We have seen that shifting the Fermi level away from the
charge neutrality point changes the dependence of the critical
current into a 1/L? behavior, opening the possibility to ob-
serve a supercurrent over length scales above 1 um at suit-
able doping levels. We have shown that this becomes fea-
sible anyhow below the crossover temperature 7° marking
the onset of the power-law decay of the supercurrent and
corresponding to the scale above which the Cooper pairs are
increasingly disrupted by thermal effects during their propa-
gation.
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