32,124 research outputs found

    InAs/InP single quantum wire formation and emission at 1.5 microns

    Get PDF
    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 microns. Additional sharp features are related to monolayer fluctuations of the two dimensional InAs layer present during the early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter

    On the Analysis of the Contact Conditions in Temporomandibular Joint Prostheses

    Get PDF
    Temporomandibular joint replacement (TMJR) is a complex surgical procedure in which the artificial joints available must assure the anatomical reconstruction and guarantee a good range of the natural temporomandibular joint (TMJ) movements. With this aim, different types of TMJ prostheses, including the stock prosthetic system and custom-made prostheses, are being currently implanted. Although temporomandibular joint replacements (TMJRs) are expected to accomplish their function during a number of years, they might actually fail and need to be replaced. This paper analyzes different design factors affecting the contact stress distributions within the TMJ prosthesis interface, which are consequently involved in their deterioration and final failure of the prosthetic device. With this purpose, a numerical model based on finite elements has been carried out in order to evaluate the stress states attained in different prosthesis configurations corresponding to general types of TMJ prostheses. On the other hand, the actual degradation of resected implants has been evaluated via optical microscopy. The linkage between the numerical simulations performed and experimental evidence allowed the authors to establish the different wear and damage mechanisms involved in the failure of stock TMJ prostheses. Indeed, the results obtained show that the contact stresses at the interface between the mandible and the glenoid fossa components play a key role in the failure process of the TMJR devices

    Suspensions Thermal Noise in the LIGO Gravitational Wave Detector

    Full text link
    We present a calculation of the maximum sensitivity achievable by the LIGO Gravitational wave detector in construction, due to limiting thermal noise of its suspensions. We present a method to calculate thermal noise that allows the prediction of the suspension thermal noise in all its 6 degrees of freedom, from the energy dissipation due to the elasticity of the suspension wires. We show how this approach encompasses and explains previous ways to approximate the thermal noise limit in gravitational waver detectors. We show how this approach can be extended to more complicated suspensions to be used in future LIGO detectors.Comment: 28 pages, 13 figure

    Fermionic collective excitations in a lattice gas of Rydberg atoms

    Full text link
    We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van-der-Waals interaction among the Rydberg sates, these many-body states are collective fermionic excitations. The first excited state is a spin-wave that extends over the entire lattice. We demonstrate that our system permits to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices

    Creating collective many-body states with highly excited atoms

    Full text link
    We study the collective excitation of a gas of highly excited atoms confined to a large spacing ring lattice, where the ground and the excited states are coupled resonantly via a laser field. Our attention is focused on the regime where the interaction between the highly excited atoms is very weak in comparison to the Rabi frequency of the laser. We demonstrate that in this case the many-body excitations of the system can be expressed in terms of free spinless fermions. The complex many-particle states arising in this regime are characterized and their properties, e.g. their correlation functions, are studied. In addition we investigate how one can actually experimentally access some of these many-particle states by a temporal variation of the laser parameters.Comment: 10 pages, 7 figure
    • …
    corecore