65,096 research outputs found

    Marginal Fermi liquid behavior from 2d Coulomb interaction

    Get PDF
    A full, nonperturbative renormalization group analysis of interacting electrons in a graphite layer is performed, in order to investigate the deviations from Fermi liquid theory that have been observed in the experimental measures of a linear quasiparticle decay rate in graphite. The electrons are coupled through Coulomb interactions, which remain unscreened due to the semimetallic character of the layer. We show that the model flows towards the noninteracting fixed-point for the whole range of couplings, with logarithmic corrections which signal the marginal character of the interaction separating Fermi liquid and non-Fermi liquid regimes.Comment: 7 pages, 2 Postscript figure

    InAs/InP single quantum wire formation and emission at 1.5 microns

    Get PDF
    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 microns. Additional sharp features are related to monolayer fluctuations of the two dimensional InAs layer present during the early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter

    X-ray/gamma-ray flux correlations in the BL Lacs Mrk 421 and 501 using HAWC data

    Full text link
    The HAWC gamma ray observatory is located at the Sierra Negra Volcano in Puebla, Mexico, at an altitude of 4,100 meters. HAWC is a wide field of view array of 300 water Cherenkov detectors that are continuously surveying ~ 2sr of the sky, operating since March 2015. The large collected data sample allows HAWC to perform an unbiased monitoring of the BL Lac Mrk 421. This is the closest and brightest known extragalactic high-synchrotron-peaked BL Lac in the gamma-ray/X- ray bands and is extensively monitored by the Large Area Telescope (LAT) on-board the Fermi satellite, and the BAT and XRT instruments of the Swift satellite. In this work, we use 25 months of HAWC data together with Swift-XRT data to characterize potential correlations between both wavelengths. This analysis shows that HAWC and Swift-XRT data are correlated even stronger than expected for quasi-simultaneous observations.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea. See arXiv:1708.02572 for all HAWC contribution

    Reflection formulas for order derivatives of Bessel functions

    Full text link
    From new integral representations of the nn-th derivative of Bessel functions with respect to the order, we derive some reflection formulas for the first and second order derivative of Jν(t)J_{\nu }\left( t\right) and % Y_{\nu }\left( t\right) for integral order, and for the nn-th order derivative of Iν(t)I_{\nu }\left( t\right) and Kν(t)K_{\nu }\left( t\right) for arbitrary real order. As an application of the reflection formulas obtained for the first order derivative, we extend some formulas given in the literature to negative integral order. Also, as a by-product, we calculate an integral which does not seem to be reported in the literature.Comment: arXiv admin note: text overlap with arXiv:1808.0560

    High-resolution imaging spectroscopy of two micro-pores and an arch filament system in a small emerging-flux region

    Full text link
    Aims. The purpose of this investigation is to characterize the temporal evolution of an emerging flux region, the associated photospheric and chromospheric flow fields, and the properties of the accompanying arch filament system. Methods. This study is based on imaging spectroscopy with the G\"ottingen Fabry-P\'erot Interferometer at the Vacuum Tower Telescope, on 2008 August 7. Cloud model (CM) inversions of line scans in the strong chromospheric absorption Hα\alpha line yielded CM parameters, which describe the cool plasma contained in the arch filament system. Results. The observations cover the decay and convergence of two micro-pores with diameters of less than one arcsecond and provide decay rates for intensity and area. The photospheric horizontal flow speed is suppressed near the two micro-pores indicating that the magnetic field is sufficiently strong to affect the convective energy transport. The micro-pores are accompanied by an arch filament system, where small-scale loops connect two regions with Hα\alpha line-core brightenings containing an emerging flux region with opposite polarities. The chromospheric velocity of the cloud material is predominantly directed downwards near the footpoints of the loops with velocities of up to 12 km/s, whereas loop tops show upward motions of about 3 km/s. Conclusions. Micro-pores are the smallest magnetic field concentrations leaving a photometric signature in the photosphere. In the observed case, they are accompanied by a miniature arch filament system indicative of newly emerging flux in the form of Ω\Omega-loops. Flux emergence and decay take place on a time-scale of about two days, whereas the photometric decay of the micro-pores is much more rapid (a few hours), which is consistent with the incipient submergence of Ω\Omega-loops. The results are representative for the smallest emerging flux regions still recognizable as such.Comment: 15 pages, 16 figures, 3 tables, published in A&
    • …
    corecore