27 research outputs found
Population statistics study of radio and gamma-ray pulsars in the Galactic plane
We present results of our pulsar population synthesis of ordinary isolated
and millisecond pulsars in the Galactic plane. Over the past several years, a
program has been developed to simulate pulsar birth, evolution and emission
using Monte Carlo techniques. We have added to the program the capability to
simulate millisecond pulsars, which are old, recycled pulsars with extremely
short periods. We model the spatial distribution of the simulated pulsars by
assuming that they start with a random kick velocity and then evolve through
the Galactic potential. We use a polar cap/slot gap model for -ray
emission from both millisecond and ordinary pulsars. From our studies of radio
pulsars that have clearly identifiable core and cone components, in which we
fit the polarization sweep as well as the pulse profiles in order to constrain
the viewing geometry, we develop a model describing the ratio of radio
core-to-cone peak fluxes. In this model, short period pulsars are more
cone-dominated than in our previous studies. We present the preliminary results
of our recent study and the implications for observing these pulsars with GLAST
and AGILE.Comment: 6 pages, 3 figures, 1 table, accepted in Astrophysics and Space
Scienc
Source population synthesis and the Galactic diffuse gamma-ray emission
Population synthesis is used to study the contribution from undetected
sources to the Galactic ridge emission measured by EGRET. Synthesized source
counts are compared with the 3rd EGRET catalogue at low and high latitudes. For
pulsar-like populations, 5-10% of the emission >100 MeV comes from sources
below the EGRET threshold. A steeper luminosity function can increase this to
20% without violating EGRET source statistics. Less luminous populations can
produce much higher values without being detected. Since the unresolved source
spectrum is different from the interstellar spectrum, it could provide an
explanation of the observed MeV and GeV excesses above the predictions, and we
give an explicit example of how this could work.Comment: Astrophysics and Space Science, in press. (Proceedings of Conference
'The multi-messenger approach to high-energy gamma-ray sources', Barcelona,
2006). Minor changes for accepted version, updated reference
Contribution of pulsars to the gamma-ray background and their observation with the space telescopes GLAST and AGILE
Luminosities and uxes of the expected population of galactic gamma-ray
pulsars become foreseeable if physical distributions at birth and evolutive
history are assigned. In this work we estimate the contribution of pulsar uxes
to the gamma-ray background, which has been measured by the EGRET experiment on
board of the CGRO. For pulsar luminosities we select some of the most important
gamma-ray emission models, taking into account both polar cap and outer gap
scenarios. We nd that this contribution strongly depends upon controversial
neutron star birth properties. A comparison between our simulation results and
EGRET data is presented for each model, nding an average contribution of about
10%. In addition, we perform the calculation of the number of new gamma-ray
pulsars detectable by GLAST and AGILE, showing a remarkable di erence between
the two classes of models. Finally, we suggest some improvements in the
numerical code, including more sophisticated galactic m odels and di erent
populations of pulsars like binaries, milliseconds, anomalous pulsars and
magnetars.Comment: 6 pages, 6 figures, to be published in the Proceedings of the 6th
International Symposium ''Frontiers of Fundamental and Computational
Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
The Geminga Fraction
Radio-quiet gamma-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the gamma-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population
Velocity and angular distributions of evaporation residues from induced32 reactions
Velocity distributions of mass-resolved evaporation residues from reactions of S32 with C12, Mg24, Al27, Si28, and Ca40 have been measured at bombarding energies of 194, 239, and 278 MeV using time-of-flight techniques. In all cases, the observed shifts in the velocity centroids relative to the values expected for complete fusion are consistent with a previously reported parametrization of a threshold for onset of incomplete fusion. Angular distributions were measured and total cross sections extracted for the Mg32 system at all three energies. A comparison with existing results for Mg32 at lower energies, and with other systems leading to the Ni56 compound nucleus, suggests two different types of compound-nuclear limitations to complete fusion at higher energies
Influence of nucleon Fermi motion on incomplete fusion
Velocity spectra were measured for evaporation residues produced in fusion reactions induced by 5-35 MeV/A14N. The results, together with published data for 16O and 20Ne induced fusion, are shown to reveal a projectile dependence of incomplete fusion processes. The data can be qualitatively described in terms of a picture which takes into account the vector addition of the center-of-mass velocities of the interacting nuclei with the intrinsic Fermi velocities of the nucleons
Cosmic-ray positrons from millisecond pulsars
Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair
production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a
primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above
∼10 GeV. Fermi has also uncovered many newMSPs, impacting Galactic stellar population models.We investigate the
contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis
code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole
magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by
strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar
wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic
medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the
Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the
magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the
Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and
RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameter