54 research outputs found

    Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation

    Full text link
    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrodinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.Comment: 9 pages, 4 figure

    Multi-Cascade Proton Acceleration by Superintense Laser Pulse in the Regime of Relativistically Induced Slab Transparency

    Full text link
    A regime of multi-cascade proton acceleration in the interaction of 1021−102210^{21}-10^{22} W/cm2^2 laser pulse with a structured target is proposed. The regime is based on the electron charge displacement under the action of laser ponderomotive force and on the effect of relativistically induced slab transparency which allows to realize idea of multi-cascade acceleration. It is shown that a target comprising several properly spaced apart thin foils can optimize the acceleration process and give at the output quasi-monoenergetic beams of protons with energies up to hundreds of MeV with energy spread of just few percent.Comment: 5 pages with 4 figure

    Ultrarelativistic nanoplasmonics as a new route towards extreme intensity attosecond pulses

    Full text link
    The generation of ultra-strong attosecond pulses through laser-plasma interactions offers the opportunity to surpass the intensity of any known laboratory radiation source, giving rise to new experimental possibilities, such as quantum electrodynamical tests and matter probing at extremely short scales. Here we demonstrate that a laser irradiated plasma surface can act as an efficient converter from the femto- to the attosecond range, giving a dramatic rise in pulse intensity. Although seemingly similar schemes have been presented in the literature, the present setup deviates significantly from previous attempts. We present a new model describing the nonlinear process of relativistic laser-plasma interaction. This model, which is applicable to a multitude of phenomena, is shown to be in excellent agreement with particle-in-cell simulations. We provide, through our model, the necessary details for an experiment to be performed. The possibility to reach intensities above 10^26 W/cm^2, using upcoming 10 petawatt laser sources, is demonstrated.Comment: 15 pages, 5 figure

    Anomalous Radiative Trapping in Laser Fields of Extreme Intensity

    Get PDF
    We demonstrate that charged particles in a sufficiently intense standing wave are compressed toward, and oscillate synchronously at, the maxima of the electric field. This unusual trapping behaviour, which we call 'anomalous radiative trapping' (ART), opens up new possibilities for the generation of radiation and particle beams, both of which are high-energy, directed and collimated. ART also provides a mechanism for particle control in high-intensity QED experiments.Comment: 5 pages, 5 pdf figures. Version 2: extended discussion of particle trajectories, references adde

    Extreme plasma states in laser-governed vacuum breakdown

    Get PDF
    Triggering vacuum breakdown at the upcoming laser facilities can provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the emerging plasma should seemingly stop rising at the relativistic critical density, when the plasma becomes opaque. Here we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow plasma generation in a small focal volume much less than λ3{\lambda}^3, and creating extreme plasma states in terms of density and produced currents. These states can be regarded as a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate the possibility of reaching densities of more than 102510^{25} cm−3^{-3}, which is an order of magnitude higher than previously expected. Controlling the process via the initial target parameters gives the opportunity to reach the discovered plasma states at the upcoming laser facilities
    • …
    corecore