16 research outputs found

    The ThomX project status

    Get PDF
    Work supported by the French Agence Nationale de la recherche as part of the program EQUIPEX under reference ANR-10-EQPX-51, the Ile de France region, CNRS-IN2P3 and Université Paris Sud XI - http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/wepro052.pdfA collaboration of seven research institutes and an industry has been set up for the ThomX project, a compact Compton Backscattering Source (CBS) based in Orsay - France. After a period of study and definition of the machine performance, a full description of all the systems has been provided. The infrastructure work has been started and the main systems are in the call for tender phase. In this paper we will illustrate the definitive machine parameters and components characteristics. We will also update the results of the different technical and experimental activities on optical resonators, RF power supplies and on the electron gun

    Estimation of Longitudinal Dimensions of Sub-Picosecond Electron Bunches with the 3-Phase Method

    No full text
    International audienceAn estimation of the longitudinal dimensions for short electron bunches in an accelerating field is an important diagnostic and can be extremely helpful in evaluating the performance of an accelerator. We investigate a method for close estimation of bunch length for sub-picosecond electron bunches from the measurement of their energy spreads. Three or more measurements for the bunch energy spread are made by varying the phase of the accelerating structure and later a reconstruction of the bunch longitudinal dimensions, namely bunch length, initial energy spread and chirp at the entrance of the accelerating structure are obtained using the least square method. A comparison of the obtained results with ASTRA simulations is also included to validate the 3-phase method for sub-ps electron bunches. It is a simple method from both understanding (easy reconstruction using transport matrices) and experimental point of views (multiple measurements of energy spread with varying phase of the accelerating structure)

    Lens Calibration for Beam Size Monitors at ThomX

    No full text
    International audienceThomX is a novel compact X-ray light source, utilising a laser and 50 MeV electron storage ring to produce X-ray photons via Compton scattering. Screens, observed by zoom lenses and optical cameras, can be used to monitor the transverse beam profile at various points. An issue with the implementation of this system is that after adjusting the zoom one needs to recalibrate the the optical system, measuring the resolution of the optical system and deducing the transformation from pixel space observed on the camera to geometrical space in the laboratory. To calibrate and measure the resolution limit of the cameras a USAF 1951 resolution chart that can be moved into or out of the screen position is used. We will report on and demonstrate the use of open source computer vision libraries to compute this calibration, and the affine transformation between the camera image plane and the screens can be deduced. We will also comment on how consumer available Canon EF mount lenses may be used as a remote controllable optical system

    Design Study of High Gradient Compact S-band TW Accelerating Structure for the ThomX LINAC Upgrade

    No full text
    International audienceThomX is a Compton source project in the range of the hard X rays (45/90 keV). The machine is composed of a 50/70 MeV injector Linac and a storage ring where an electron bunch collides with a laser pulse accumulated in a Fabry-Perot resonator. The final goal is to provide an X-rays average flux of 10¹²-10¹³ ph/s. A demonstrator was funded and is being built on the Orsay university campus. The S-band injector Linac consists of 2.5 cell photocathode RF gun and a TW accelerating section. During the commissioning phase, a standard LIL S-band accelerating section is able to achieve around 50 MeV corresponding to around 45 keV X-rays energy. Since the maximum targeted X-ray energy is 90 keV, the development of a new S-band accelerating section, intended to replace the LIL structure, will provide an electron beam energy of 70 MeV. This requires essentially the development of more reliable high gradient compact S band accelerating section. Such design is tailored for high gradient operation, low breakdown rates. We present here the RF design of the LINAC upgrade and the performances obtained in terms of beam dynamics

    Study of the Performances of a 3D Printed BPM

    No full text
    International audienceFollowing previous results which have shown that some components built using additive manufacturing (3D printing) are compatible with ultra high vacuum, we have adapted the design of a stripline BPM to the requirements of additive manufacturing and built it. We report here on the design adaptation and on its mechanical and electrical performances

    Study of the suitability of 3D printing for Ultra-High Vacuum applications

    No full text
    International audienceIn the recent year additive manufacturing (3D printing) has revolutionized mechanical engineering by allowing the quick production of mechanical components with complex shapes. So far most of these components are made in plastic and therefore can not be used in accelerator beam pipes. We have investigated samples printed using a metal 3D printer to study their behavior under vacuum. We report on our first tests showing that such samples are vacuum compatible and comparing pumping time

    Is it Possible to Use Additive Manufacturing for Accelerator UHV Beam Pipes?

    No full text
    International audienceRecently, additive manufacturing (AM) has revolutionized mechanical engineering by allowing the quick production of mechanical components with complex shapes. AM by selective laser melting (SLM) is an advanced manufacturing process which uses lasers to melt metal powders one layer at a time to produce final 3D components. This technology could be also used to make Ultra High Vacuum components. Therefore, we investigated in this work the reproducibility of AM 316L stainless steel properties for different specimen supplied by several manufacturers with the same SLM process. Clearly, the microstructure and therefore the mechanical properties of the investigated AM samples are different as a function of manufacturers: indeed, they are largely influenced by processing parameters, which produces heterogeneous and anisotropic microstructures that differ from traditional wrought counterparts. Samples were also submitted to bake cycles at high temperature, in order to check the structural stability of material properties after heat treatments. The outgassing rates and the secondary emission yield of vacuum components constructed from AM 316L were also measured. Finally, the possibility to use AM for accelerator beam pipes will be discussed

    Benchmarking for CODAL beam dynamics code: laser-plasma accelerator case study

    No full text
    International audienceLaser-plasma electron beams are known for their large divergence and energy spread while having ultra-short bunches, which differentiate them from standard RF accelerated beams.To study the laser-plasma beam dynamics and to design a transport line, simulations with *CODAL* [1], a code developed by SOLEIL in collaboration with IJCLab, have been used. *CODAL* is a 6D 'kick' tracking code based on the symplectic integration of the local hamiltonian for each element of the lattice. *CODAL* also includes collective effects simulations such as space charge, wakefield and coherent synchrotron radiation.To validate the studies in the framework of Laser-Plasma Acceleratior developpement, results from *CODAL* have been compared to *TraceWin* [2], a well-known tracking code developed by CEA.The comparison has been made using the outcome of Laser WakeField Acceleration (LWFA) particle-in-cell simulations as initial start particle coordinates from a case study of PALLAS project, a Laser-Plasma Accelerator test facility at IJCLab
    corecore