161 research outputs found
Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis
Bloodstream infections rank among the most serious causes of morbidity and mortality in hospitalized patients, partly due to the long period (up to one week) required for clinical diagnosis. In this work, we have developed a sensitive method to quickly and accurately identify bacteria in human blood samples by combining optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and efficient immunoaffinity enrichment/separation. A library of bacteria reference mass spectra at different cell numbers was firstly built. Due to a reduced sample spot size, the reference spectra could be obtained from as few as 10 to 10(2) intact bacterial cells. Bacteria in human blood samples were then extracted using antibodies-modified magnetic beads for MS fingerprinting. By comparing the sample spectra with the reference spectra based on a cosine correlation, bacteria with concentrations as low as 500 cells per mL in blood serum and 8000 cells per mL in whole blood were identified. The proposed method was further applied to positive clinical blood cultures (BCs) provided by a local hospital, where Escherichia coli and Staphylococcus aureus were identified. Because of the method's high sensitivity, the BC time required for diagnosis can be greatly reduced. As a proof of concept, whole blood spiked with a low initial concentration (10(2) or 10(3) cells per mL) of bacteria was cultured in commercial BC bottles and analysed by the developed method after different BC times. Bacteria were successfully identified after 4 hours of BC. Therefore, an entire diagnostic process could be accurately accomplished within half a day using the newly developed method, which could facilitate the timely determination of appropriate anti-bacterial therapy and decrease the risk of mortality from bloodstream infections
The accelerated scaling attractor solution of the interacting agegraphic dark energy in Brans-Dicke theory
We investigate the interacting agegraphic dark energy in Brans-Dicke theory
and introduce a new series general forms of dark sector coupling. As examples,
we select three cases involving a linear interaction form (Model I) and two
nonlinear interaction form (Model II and Model III). Our conclusions show that
the accelerated scaling attractor solutions do exist in these models. We also
find that these interacting agegraphic dark energy modes are consistent with
the observational data. The difference in these models is that nonlinear
interaction forms give more approached evolution to the standard CDM
model than the linear one. Our work implies that the nonlinear interaction
forms should be payed more attention.Comment: 9 pages, 10 figures, accepted in Eur. Phys. J.
Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach
We use the Markov Chain Monte Carlo method to investigate a global
constraints on the modified Chaplygin gas (MCG) model as the unification of
dark matter and dark energy from the latest observational data: the Union2
dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the
cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the
cosmic microwave background (CMB) data. In a flat universe, the constraint
results for MCG model are,
()
,
()
,
()
,
()
, and ()
.Comment: 12 pages, 1figur
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons
The branching fractions for the inclusive Cabibbo-favored ~K*0 and
Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample
of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with
the BES-II detector at the BEPC collider. The branching fractions for the
decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 ->
\~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and
BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching
fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X)
< 6.6%
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
Study of
New data are presented on from a sample of 58M
events in the upgraded BES II detector at the BEPC. There is a
conspicuous signal for and a peak at higher mass which
may be fitted with . From a combined analysis with
data, the branching ratio
is at the 95%
confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.
- …