12,191 research outputs found

    GEM/POPs: a global 3-D dynamic model for semi-volatile persistent organic pollutants ? Part 1: Model description and evaluations of air concentrations

    Get PDF
    International audienceGEM/POPs was developed to simulate the transport, deposition and partitioning of semi-volatile persistent organic pollutants (POPs) in the atmosphere within the framework of Canadian weather forecasting model GEM. In addition to the general processes such as anthropogenic emissions, atmosphere/water and atmosphere/soil exchanges, GEM/POPs incorporates a dynamic aerosol module to provide the aerosol surface areas for the semi-volatile POPs to partition between gaseous and particle phases and a mechanism for particle-bound POPs to be removed. Simulation results of three PCBs (28, 153 and 180) for the year 2000 indicate that the model captured the main features of global atmospheric PCBs when compared with observations from EMEP, IADN and Alert stations. The annual averaged concentrations and the fractionation of the three PCBs as a function of latitudes agreed reasonably well with observations. The impacts of atmospheric aerosols on the transports and partitioning of the three PCBs are reasonably simulated. The ratio of particulate to gaseous PCBs in the atmospheric column ranges from less than 0.1 for PCB28 to as high as 100 for PCB180, increasing from the warm lower latitudes to the cold high latitudes. Application of GEM/POPs in a study of the global transports and budgets of various PCBs accompanies this paper

    Non-existence of Extended Holographic Dark Energy with Hubble Horizon

    Full text link
    The extended holographic dark energy model with the Hubble horizon as the infrared cutoff avoids the problem of the circular reasoning of the holographic dark energy model. We show that the infrared cutoff of the extended holographic dark energy model cannot be the Hubble horizon provided that the Brans-Dicke parameter ω\omega satisfies the experimental constraint ω>104\omega> 10^4, and this is proved as a no-go theorem. The no-go theorem also applies to the case in which the dark matter interacts with the dark energy.Comment: 12 pages with revtex, 4 figures, v2: minor corrections to match the version appeared in JCA

    Hologrphy and holographic dark energy model

    Full text link
    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived.Comment: no figures, use revtex, v2: use iop style, some typos corrected and references updated, will appear in CQ

    Thermodynamical properties of the Universe with dark energy

    Get PDF
    We have investigated the thermodynamical properties of the Universe with dark energy. Adopting the usual assumption in deriving the constant co-moving entropy density that the physical volume and the temperature are independent, we observed some strange thermodynamical behaviors. However, these strange behaviors disappeared if we consider the realistic situation that the physical volume and the temperature of the Universe are related. Based on the well known correspondence between the Friedmann equation and the first law of thermodynamics of the apparent horizon, we argued that the apparent horizon is the physical horizon in dealing with thermodynamics problems. We have concentrated on the volume of the Universe within the apparent horizon and considered that the Universe is in thermal equilibrium with the Hawking temperature on the apparent horizon. For dark energy with w1w\ge -1, the holographic principle and the generalized second law are always respected.Comment: two figures; v2: minor corrections and updates, JCAP in pres

    Rashbons: Properties and their significance

    Get PDF
    In presence of a synthetic non-Abelian gauge field that induces a Rashba like spin-orbit interaction, a collection of weakly interacting fermions undergoes a crossover from a BCS ground state to a BEC ground state when the strength of the gauge field is increased [Phys. Rev. B {\bf 84}, 014512 (2011)]. The BEC that is obtained at large gauge coupling strengths is a condensate of tightly bound bosonic fermion-pairs whose properties are solely determined by the Rashba gauge field -- hence called rashbons. In this paper, we conduct a systematic study of the properties of rashbons and their dispersion. This study reveals a new qualitative aspect of the problem of interacting fermions in non-Abelian gauge fields, i.e., that the rashbon state induced by the gauge field for small centre of mass momenta of the fermions ceases to exist when this momentum exceeds a critical value which is of the order of the gauge coupling strength. The study allows us to estimate the transition temperature of the rashbon BEC, and suggests a route to enhance the exponentially small transition temperature of the system with a fixed weak attraction to the order of the Fermi temperature by tuning the strength of the non-Abelian gauge field. The nature of the rashbon dispersion, and in particular the absence of the rashbon states at large momenta, suggests a regime of parameter space where the normal state of the system will be a dynamical mixture of uncondensed rashbons and unpaired helical fermions. Such a state should show many novel features including pseudogap physics.Comment: 8 pages, 6 figure

    A Note on Temperature and Energy of 4-dimensional Black Holes from Entropic Force

    Full text link
    We investigate the temperature and energy on holographic screens for 4-dimensional black holes with the entropic force idea proposed by Verlinde. We find that the "Unruh-Verlinde temperature" is equal to the Hawking temperature on the horizon and can be considered as a generalized Hawking temperature on the holographic screen outside the horizons. The energy on the holographic screen is not the black hole mass MM but the reduced mass M0M_0, which is related to the black hole parameters. With the replacement of the black hole mass MM by the reduced mass M0M_0, the entropic force can be written as F=GmM0r2F=\frac{GmM_0}{r^2}, which could be tested by experiments.Comment: V4: 13 pages, 4 figures, title changed, discussions for experiments added, accepted by CQ

    Decoherence and the rate of entropy production in chaotic quantum systems

    Get PDF
    We show that for an open quantum system which is classically chaotic (a quartic double well with harmonic driving coupled to a sea of harmonic oscillators) the rate of entropy production has, as a function of time, two relevant regimes: For short times it is proportional to the diffusion coefficient (fixed by the system--environment coupling strength). For longer times (but before equilibration) there is a regime where the entropy production rate is fixed by the Lyapunov exponent. The nature of the transition time between both regimes is investigated.Comment: Revtex, 4 pages, 3 figures include
    corecore