25,002 research outputs found

    Quantum anti-quenching of radiation from laser-driven structured plasma channels

    Get PDF
    We demonstrate that in the interaction of a high-power laser pulse with a structured solid-density plasma-channel, clear quantum signatures of stochastic radiation emission manifest, disclosing a novel avenue to studying the quantized nature of photon emission. In contrast to earlier findings we observe that the total radiated energy for very short interaction times, achieved by studying thin plasma channel targets, is significantly larger in a quantum radiation model as compared to a calculation including classical radiation reaction, i.e., we observe quantum anti-quenching. By means of a detailed analytical analysis and a refined test particle model, corroborated by a full kinetic plasma simulation, we demonstrate that this counter-intuitive behavior is due to the constant supply of energy to the setup through the driving laser. We comment on an experimental realization of the proposed setup, feasible at upcoming high-intensity laser facilities, since the required thin targets can be manufactured and the driving laser pulses provided with existing technology.Comment: 6 pages, 3 figure

    Strong energy enhancement in a laser-driven plasma-based accelerator through stochastic friction

    Get PDF
    Conventionally, friction is understood as an efficient dissipation mechanism depleting a physical system of energy as an unavoidable feature of any realistic device involving moving parts, e.g., in mechanical brakes. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.e., the energy loss of an accelerated charge due to the emission of radiation. We demonstrate analytically and numerically how radiation friction can enhance the performance of a specific class of laser-driven particle accelerators. We find the unexpected directional energy boost to be due to the particles' energy being reduced through friction whence the driving laser can accelerate them more efficiently. In a quantitative case we find the energy of the laser-accelerated particles to be enhanced by orders of magnitude.Comment: 14 pages, 3 figure

    IKEA: global sourcing and the sustainable leather initiative

    Get PDF
    The leather industry has traditionally been characterized by global operations across both developed and developing countries. Due to the long distance and contextual differences, there are numerous sustainability issues occurring along the global leather supply chain. Addressing these issues is both a responsibility and a challenge for multinational companies, especially in their global sourcing (GS) activities. This teaching case provides an example of implementing the sustainable leather initiative in the global sourcing process at IKEA. The case demonstrates IKEA’s sustainable leather initiative supported by its tailored GS strategy and GS structure and provides a benchmark of Sustainable GS for multinational companies and allows for a thorough discussion of how to implement a sustainability initiative while conducting GS. The case can be used to teach graduate/postgraduate in agricultural business, MBA and executive students on sustainable supply chain management and corporate social responsibility
    • …
    corecore