27 research outputs found

    Receptor Tyrosine Kinase Interaction with the Tumor Microenvironment in Malignant Progression of Human Glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most malignant brain tumor, characterized with a rapid progression and poor prognosis despite modern therapies. Receptor tyrosine kinase (RTK) is a membrane tyrosine kinase that could be activated by binding ligands with the extracellular domain, and communicating signals according to the tyrosine kinase activity of the intracellular domain. Recent studies revealed that RTKs such as EGFR, PDGFR and MET play key roles in cancer progression through regulation of abundant cellular processes. As transmembrane proteins, RTKs work as a mediator between the extracellular environment and intracellular compartments, translating the tumor microenvironment (TME) signals into the tumor cells. TME is also a critical regulator for the malignant process, lately receiving considerable attention. It is composed of extracellular matrix (ECM), the stromal cells (i.e., endothelial cells, microglia and fibroblasts), secreted factors, and hypoxia environment, etc. Among these, the strong invasion and sustained angiogenesis of GBM are closely related to ECM-receptor interaction and -associated signaling events. In this chapter, we consider the interaction and mechanisms of RTKs and TME in GBM progression, especially the role of ECM-receptor mediated signaling in tumor invasion, hypoxia and angiogenesis, glioma stem cells and tumor metabolism. We then summarize and discuss recent improvements on the approaches of targeting RTK and TME as the therapy in the primary GBM

    Modeling Hidden Nodes Collisions in Wireless Sensor Networks: Analysis Approach

    Full text link
    This paper studied both types of collisions. In this paper, we show that advocated solutions for coping with hidden node collisions are unsuitable for sensor networks. We model both types of collisions and derive closed-form formula giving the probability of hidden and visible node collisions. To reduce these collisions, we propose two solutions. The first one based on tuning the carrier sense threshold saves a substantial amount of collisions by reducing the number of hidden nodes. The second one based on adjusting the contention window size is complementary to the first one. It reduces the probability of overlapping transmissions, which reduces both collisions due to hidden and visible nodes. We validate and evaluate the performance of these solutions through simulations

    Whole genome level analysis of the DEATH protein superfamily in sheep (Ovis aries) and their coordination relationship in regulating lactation

    No full text
    Abstract Background Sheep milk is a nutritional and health-promoting food source for humans. The DEATH superfamily is a conserved protein family, and some of its members are closely related to lactation. Systematic studies of the members of the DEATH superfamily are important for further understanding its functions in the mammary gland during lactation; however, there studies are currently lacking. Results Herein, 74 members of the DEATH superfamily were identified in sheep, and phylogenetic analyses indicated that four subfamilies were strongly correlated in evolution. The Ka/Ks calculations demonstrated that negative selection was the primary pressure acting on DEATH members; however, the immune-related gene IFI203 was undergoing strong positive selection in sheep. Furthermore, in the late pregnancy and lactation period, these DEATH genes exhibited similar expression patterns under different nutritional conditions in the mammary gland, and four subfamilies were positively correlated in expression patterns. Additionally, half or more DEATH genes were upregulated in the lactation period, which implied their crucial roles in the lactation of sheep. Conclusions The current research contributes to a better understanding of the evolutionary characteristics of the DEATH superfamily and their roles in sheep lactation, and it also provides potential target genes for the molecular breeding of dairy sheep. Graphical Abstrac

    A solid‐state fibriform supercapacitor boosted by host – guest hybridization between the carbon nanotube scaffold and MXene nanosheets

    No full text
    Fiber-shaped supercapacitors with improved specific capacitance and high rate capability are a promising candidate as power supply for smart textiles. However, the synergistic interaction between conductive filaments and active nanomaterials remains a crucial challenge, especially when hydrothermal or electrochemical deposition is used to produce a core (fiber)-shell (active materials) fibrous structure. On the other hand, although 2D pseudocapacitive materials, e.g., Ti3 C2 T x (MXene), have demonstrated high volumetric capacitance, high electrical conductivity, and hydrophilic characteristics, MXene-based electrodes normally suffer from poor rate capability owing to the sheet restacking especially when the loading level is high and solid-state gel is used as electrolyte. Herein, by hosting MXene nanosheets (Ti3 C2 T x ) in the corridor of a scrolled carbon nanotube (CNT) scaffold, a MXene/CNT fiber with helical structure is successfully fabricated. These features offer open spaces for rapid ion diffusion and guarantee fast electron transport. The solid-state supercapacitor based on such hybrid fibers with gel electrolyte coating exhibits a volumetric capacitance of 22.7 F cm-3 at 0.1 A cm-3 with capacitance retention of 84% at current density of 1.0 A cm-3 (19.1 F cm-3 ), improved volumetric energy density of 2.55 mWh cm-3 at the power density of 45.9 mW cm-3 , and excellent mechanical robustness

    Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors

    No full text
    Heteroatom-doped carbon nanostructures with uniform size and morphology, well-designed architectures, and minimized interfacial resistance have been recognized as promising electrode materials for energy storage, but remain a crucial challenge. Herein, we develop a general approach of polarity-induced decoration of a monolayer sheath of metal-organic framework (MOF) particles with excellent uniformity in size and morphology on electrospun polymer nanofibers. These hybrid nanofibers are facilely converted into nitrogen-doped nanofibrous carbon (denoted as N-NFC) during pyrolysis. The thus-obtained N-NFC features (1) a one-dimensional nanofibrous structure with a highly conductive core, (2) a monolayer sheath of hollow carbon-frames with uniform size and morphology, (3) plenty of micro/mesopores with a highly accessible surface area, and (4) a high N-doping level, all of which guarantee its good electrochemical performance with a high capacitance of 387.3 F g⁻¹ at 1 A g⁻¹. In a solid-state supercapacitor, it delivers excellent rate capability (78.0 F g⁻¹ at 0.2 A g⁻¹ and 64.0 F g⁻¹ at 1 A g⁻¹), an enhanced energy density of 7.9 W h kg⁻¹ at a power density of 219 W kg⁻¹, and outstanding cycling stability with 90% capacity retained over 10 000 cycles at 1 A g⁻¹.This work was supported by the National Natural Science Foundation of China (61704076), the Natural Science Foundation of Jiangsu Province (BK20171018), the NanjingTech Start-Up Grant (3983500150), and the Jiangsu Specially-Appointed Professor program (54935012)

    The Jahn-Teller Effect for Amorphization of Molybdenum Trioxide towards High-Performance Fiber Supercapacitor

    No full text
    Amorphous pseudocapacitive nanomaterials are highly desired in energy storage applications for their disordered crystal structures, fast electrochemical dynamics, and outstanding cyclic stability, yet hardly achievable using the state-of-the-art synthetic strategies. Herein, for the first time, high capacitive fiber electrodes embedded with nanosized amorphous molybdenum trioxide (A-MoO3-x) featuring an average particle diameter of ~20 nm and rich oxygen vacancies are obtained via a top-down method using α-MoO3 bulk belts as the precursors. The Jahn-Teller distortion in MoO6 octahedra due to the doubly degenerate ground state of Mo5+, which can be continuously strengthened by oxygen vacancies, triggers the phase transformation of α-MoO3 bulk belts (up to 30 μm long and 500 nm wide). The optimized fibrous electrode exhibits among the highest volumetric performance with a specific capacitance (CV) of 921.5 F cm-3 under 0.3 A cm-3, endowing the fiber-based weaveable supercapacitor superior CV and EV (energy density) of 107.0 F cm-3 and 9.5 mWh cm-3, respectively, together with excellent cyclic stability, mechanical robustness, and rate capability. This work demonstrates a promising strategy for synthesizing nanosized amorphous materials in a scalable, cost-effective, and controllable manner

    Structural basis of FYCO1 and MAP1LC3A interaction reveals a novel binding mode for Atg8-family proteins

    No full text
    <p>FYCO1 (FYVE and coiled-coil domain containing 1) functions as an autophagy adaptor in directly linking autophagosomes with the microtubule-based kinesin motor, and plays an essential role in the microtubule plus end-directed transport of autophagic vesicles. The specific association of FYCO1 with autophagosomes is mediated by its interaction with Atg8-family proteins decorated on the outer surface of autophagosome. However, the mechanistic basis governing the interaction between FYCO1 and Atg8-family proteins is largely unknown. Here, using biochemical and structural analyses, we demonstrated that FYCO1 contains a unique LC3-interacting region (LIR), which discriminately binds to mammalian Atg8 orthologs and preferentially binds to the MAP1LC3A and MAP1LC3B. In addition to uncovering the detailed molecular mechanism underlying the FYCO1 LIR and MAP1LC3A interaction, the determined FYCO1-LIR-MAP1LC3A complex structure also reveals a unique LIR binding mode for Atg8-family proteins, and demonstrates, first, the functional relevance of adjacent sequences C-terminal to the LIR core motif for binding to Atg8-family proteins. Taken together, our findings not only provide new mechanistic insight into FYCO1-mediated transport of autophagosomes, but also expand our understanding of the interaction modes between LIR motifs and Atg8-family proteins in general.</p
    corecore