17,856 research outputs found

    Thermal response of Space Shuttle wing during reentry heating

    Get PDF
    A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown

    Reentry heat transfer analysis of the space shuttle orbiter

    Get PDF
    A structural performance and resizing finite element thermal analysis computer program was used in the reentry heat transfer analysis of the space shuttle. Two typical wing cross sections and a midfuselage cross section were selected for the analysis. The surface heat inputs to the thermal models were obtained from aerodynamic heating analyses, which assumed a purely turbulent boundary layer, a purely laminar boundary layer, separated flow, and transition from laminar to turbulent flow. The effect of internal radiation was found to be quite significant. With the effect of the internal radiation considered, the wing lower skin temperature became about 39 C (70 F) lower. The results were compared with fight data for space transportation system, trajectory 1. The calculated and measured temperatures compared well for the wing if laminar flow was assumed for the lower surface and bay one upper surface and if separated flow was assumed for the upper surfaces of bays other than bay one. For the fuselage, good agreement between the calculated and measured data was obtained if laminar flow was assumed for the bottom surface. The structural temperatures were found to reach their peak values shortly before touchdown. In addition, the finite element solutions were compared with those obtained from the conventional finite difference solutions

    Reentry heating analysis of space shuttle with comparison of flight data

    Get PDF
    Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow

    Improved cosmological constraints on the curvature and equation of state of dark energy

    Full text link
    We apply the Constitution compilation of 397 supernova Ia, the baryon acoustic oscillation measurements including the AA parameter, the distance ratio and the radial data, the five-year Wilkinson microwave anisotropy probe and the Hubble parameter data to study the geometry of the universe and the property of dark energy by using the popular Chevallier-Polarski-Linder and Jassal-Bagla-Padmanabhan parameterizations. We compare the simple χ2\chi^2 method of joined contour estimation and the Monte Carlo Markov chain method, and find that it is necessary to make the marginalized analysis on the error estimation. The probabilities of Ωk\Omega_k and waw_a in the Chevallier-Polarski-Linder model are skew distributions, and the marginalized 1σ1\sigma errors are Ωm=0.279−0.008+0.015\Omega_m=0.279^{+0.015}_{-0.008}, Ωk=0.005−0.011+0.006\Omega_k=0.005^{+0.006}_{-0.011}, w0=−1.05−0.06+0.23w_0=-1.05^{+0.23}_{-0.06}, and wa=0.5−1.5+0.3w_a=0.5^{+0.3}_{-1.5}. For the Jassal-Bagla-Padmanabhan model, the marginalized 1σ1\sigma errors are Ωm=0.281−0.01+0.015\Omega_m=0.281^{+0.015}_{-0.01}, Ωk=0.000−0.006+0.007\Omega_k=0.000^{+0.007}_{-0.006}, w0=−0.96−0.18+0.25w_0=-0.96^{+0.25}_{-0.18}, and wa=−0.6−1.6+1.9w_a=-0.6^{+1.9}_{-1.6}. The equation of state parameter w(z)w(z) of dark energy is negative in the redshift range 0≤z≤20\le z\le 2 at more than 3σ3\sigma level. The flat Λ\LambdaCDM model is consistent with the current observational data at the 1σ1\sigma level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to match the pulished versio

    Probing the cosmic acceleration from combinations of different data sets

    Full text link
    We examine in some detail the influence of the systematics in different data sets including type Ia supernova sample, baryon acoustic oscillation data and the cosmic microwave background information on the fitting results of the Chevallier-Polarski-Linder parametrization. We find that the systematics in the data sets does influence the fitting results and leads to different evolutional behavior of dark energy. To check the versatility of Chevallier-Polarski-Linder parametrization, we also perform the analysis on the Wetterich parametrization of dark energy. The results show that both the parametrization of dark energy and the systematics in data sets influence the evolutional behavior of dark energy.Comment: 15 pages, 5 figures and 1 table, major revision, delete bao a data, main results unchanged. jcap in press

    The superheated Melting of Grain Boundary

    Full text link
    Based on a model of the melting of Grain Boundary (GB), we discuss the possibility of the existence of superheated GB state. A Molecular Dynamics simulation presented here shows that the superheated GB state can realized in the high symmetric tilt GB. Whether the sizes of liquid nuclei exceed a critical size determined the superheating grain boundary melting or not. Our results also indicate that the increase of melting point due to pressure is smaller than the superheating due to nucleation mechanism.Comment: Accepted by PRB, 7 pages and 5 figure

    Cloning and expression of a small heat shock protein gene CaHSP24 from pepper under abiotic stress

    Get PDF
    The sequence of a small heat shock protein (sHSP) gene CaHSP24 was obtained by homology-based candidate gene method and rapid amplification of cDNA ends (RACE). The cDNA sequence of this gene is 920 bp in size (GenBank: HM132040) and contains an open reading frame (ORF) of 636 bp, which was predicted to encode a protein with 211 amino acid residues. The phylogenetic tree showed that CaHSP24 was quite similar to mitochondrial sHSPs from other plants but was distantly related to sHSPs of pepper cytoplasm and chloroplast. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) showed that CaHSP24 was hardly detectable at 32°C, but accumulated markedly at 40°C. The gene was expressed 0.5 h after exposure to heat stress and the expression reached a peak in 1.5 h; the expression level in heat-resistant cultivar B35 was higher than that in heat-sensitive cultivar B6. The gene was also expressed weakly under salinity, heavy metal, low temperature and oxidative stresses; the expression levels under these conditions were remarkably lower than those under heat stress. Cell viability experiments showed that the heterologous expression of CaHSP24 could enhance the viability of Escherichia coli under heat stress. To sum up, CaHSP24 may play an important role for response to heat stress condition.Key words: Pepper, CaHSP24, heat stress, gene expression

    Thermodynamical properties of the Universe with dark energy

    Get PDF
    We have investigated the thermodynamical properties of the Universe with dark energy. Adopting the usual assumption in deriving the constant co-moving entropy density that the physical volume and the temperature are independent, we observed some strange thermodynamical behaviors. However, these strange behaviors disappeared if we consider the realistic situation that the physical volume and the temperature of the Universe are related. Based on the well known correspondence between the Friedmann equation and the first law of thermodynamics of the apparent horizon, we argued that the apparent horizon is the physical horizon in dealing with thermodynamics problems. We have concentrated on the volume of the Universe within the apparent horizon and considered that the Universe is in thermal equilibrium with the Hawking temperature on the apparent horizon. For dark energy with w≥−1w\ge -1, the holographic principle and the generalized second law are always respected.Comment: two figures; v2: minor corrections and updates, JCAP in pres
    • …
    corecore