21 research outputs found

    SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanometer silicon dioxide (nano-SiO<sub>2</sub>) has a wide variety of applications in material sciences, engineering and medicine; however, the potential cell biological and proteomic effects of nano-SiO<sub>2 </sub>exposure and the toxic mechanisms remain far from clear.</p> <p>Results</p> <p>Here, we evaluated the effects of amorphous nano-SiO<sub>2 </sub>(15-nm, 30-nm SiO<sub>2</sub>). on cellular viability, cell cycle, apoptosis and protein expression in HaCaT cells by using biochemical and morphological analysis, two-dimensional differential gel electrophoresis (2D-DIGE) as well as mass spectrometry (MS). We found that the cellular viability of HaCaT cells was significantly decreased in a dose-dependent manner after the treatment of nano-SiO<sub>2 </sub>and micro-sized SiO<sub>2 </sub>particles. The IC<sub>50 </sub>value (50% concentration of inhibition) was associated with the size of SiO<sub>2 </sub>particles. Exposure to nano-SiO<sub>2 </sub>and micro-sized SiO<sub>2 </sub>particles also induced apoptosis in HaCaT cells in a dose-dependent manner. Furthermore, the smaller SiO<sub>2 </sub>particle size was, the higher apoptotic rate the cells underwent. The proteomic analysis revealed that 16 differentially expressed proteins were induced by SiO<sub>2 </sub>exposure, and that the expression levels of the differentially expressed proteins were associated with the particle size. The 16 proteins were identified by MALDI-TOF-TOF-MS analysis and could be classified into 5 categories according to their functions. They include oxidative stress-associated proteins; cytoskeleton-associated proteins; molecular chaperones; energy metabolism-associated proteins; apoptosis and tumor-associated proteins.</p> <p>Conclusions</p> <p>These results showed that nano-SiO<sub>2 </sub>exposure exerted toxic effects and altered protein expression in HaCaT cells. The data indicated the alterations of the proteins, such as the proteins associated with oxidative stress and apoptosis, could be involved in the toxic mechanisms of nano-SiO<sub>2 </sub>exposure.</p

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR

    A DNA-Damage Inducible Gene Promotes the Formation of Antibiotic Persisters in Response to the Quorum Sensing Signaling Peptide in Streptococcus mutans

    No full text
    Bacteria use quorum sensing (QS) to communicate with each other via secreted small autoinducers produced by individuals. QS allows bacteria to display a unified response that benefits the species during adaptation to environment, colonization, and defense against competitors. In oral streptococci, the CSP-ComDE QS is an inducible DNA damage repair system that is pivotal for bacterial survival. In the oral pathogen Streptococcus mutans, the QS system positively influences the formation of antibiotic persisters, cells that can survive antibiotic attack by entering a non-proliferative state. We recently identified a novel gene, pep299, that is activated in the persister cell fraction induced by QS. In this study, we focused our investigation on the role of pep299, a gene encoding a bacteriocin-like peptide, in the formation of antibiotic persisters. Mutant &Delta;299, unable to produce Pep299, showed a dramatic reduction in the number of stress-induced persisters. Using a co-culture assay, we showed that cells overproducing pep299 induced the formation of persisters in the mutant, suggesting that Pep299 was actively secreted and detected by neighboring cells. Cells exposed to DNA damage conditions activated the gene expression of pep299. Interestingly, our results suggested that the pep299 gene was also involved in the regulation of a QS-inducible toxin&ndash;antitoxin system. Our study suggests that the pep299 gene is at the core of the triggered persistence phenotype in S.&nbsp;mutans, allowing cells to transition into a state of reduced metabolic activity and antibiotic tolerance

    Conformation and mechanical property of rpoS mRNA inhibitory stem studied by optical tweezers and X-ray scattering.

    No full text
    3' downstream inhibitory stem plays a crucial role in locking rpoS mRNA 5' untranslated region in a self-inhibitory state. Here, we used optical tweezers to study the unfolding/refolding of rpoS inhibitory stem in the absence and presence of Mg2+. We found adding Mg2+ decreased the free energy of the RNA junction without re-arranging its secondary structure, through confirming that this RNA formed a canonical RNA three-way junction. We suspected increased free energy might change the relative orientation of different stems of rpoS and confirmed this by small angle X-ray scattering. Such changed conformation may improve Hfq-bridged annealing between sRNA and rpoS RNA inhibitory stem. We established a convenient route to analyze the changes of RNA conformation and folding dynamics by combining optical tweezers with X-ray scattering methods. This route can be easily applied in the studies of other RNA structure and ligand-RNA

    Quantifying factory-scale CO2/CH4 emission based on mobile measurements and EMISSION-PARTITION model: cases in China

    No full text
    Development of the measurement-based carbon accounting means is of great importance to supplement the traditional inventory compilation. Mobile CO _2 /CH _4 measurement provides a flexible way to inspect plant-scale CO _2 /CH _4 emissions without the need to notify factories. In 2021, our team used a vehicle-based monitor system to conduct field campaigns in two cities and one industrial park in China, totaling 1143 km. Furthermore, we designed a model based on sample concentrations to evaluate CO _2 /CH _4 emissions, EMISSION-PARTITION, which can be used to determine global optimal emission intensity and related dispersion parameters via intelligent algorithm (particle swarm optimization) and interior point penalty function. We evaluated the performance of EMISSION-PARTITION in chemical, coal washing, and waste incineration plants. The correlations between measured samples and rebuilt simulated ones were larger than 0.76, and RMSE was less than 11.7 mg m ^−3 , even with much fewer samples (25). This study demonstrated the wide applications of a vehicle-based monitoring system in detecting greenhouse gas emission sources

    Retrieving CH4-emission rates from coal mine ventilation shafts using UAV-based AirCore observations and the genetic algorithm-interior point penalty function (GA-IPPF) model

    Get PDF
    There are plenty of monitoring methods to quantify gas emission rates based on gas concentration measurements around the strong sources. However, there is a lack of quantitative models to evaluate methane emission rates from coal mines with less prior information. In this study, we develop a genetic algorithm-interior point penalty function (GA-IPPF) model to calculate the emission rates of large point sources of CH4 based on concentration samples. This model can provide optimized dispersion parameters and self-calibration, thus lowering the requirements for auxiliary data accuracy. During the Carbon Dioxide and Methane Mission (CoMet) pre-campaign, we retrieve CH4-emission rates from a ventilation shaft in Pniówek coal mine (Silesia coal mining region, Poland) based on the data collected by an unmanned aerial vehicle (UAV)-based AirCore system and a GA-IPPF model. The concerned CH4-emission rates are variable even on a single day, ranging from 621.3 ± 19.8 to 1452.4 ± 60.5 kg h-1 on 18 August 2017 and from 348.4 ± 12.1 to 1478.4 ± 50.3 kg h-1 on 21 August 2017. Results show that CH4 concentration data reconstructed by the retrieved parameters are highly consistent with the measured ones. Meanwhile, we demonstrate the application of GA-IPPF in three gas control release experiments, and the accuracies of retrieved gas emission rates are better than 95.0 %. This study indicates that the GA-IPPF model can quantify the CH4-emission rates from strong point sources with high accuracy
    corecore