2,244 research outputs found

    Coalgebraic Weak Bisimulation from Recursive Equations over Monads

    Full text link
    Strong bisimulation for labelled transition systems is one of the most fundamental equivalences in process algebra, and has been generalised to numerous classes of systems that exhibit richer transition behaviour. Nearly all of the ensuing notions are instances of the more general notion of coalgebraic bisimulation. Weak bisimulation, however, has so far been much less amenable to a coalgebraic treatment. Here we attempt to close this gap by giving a coalgebraic treatment of (parametrized) weak equivalences, including weak bisimulation. Our analysis requires that the functor defining the transition type of the system is based on a suitable order-enriched monad, which allows us to capture weak equivalences by least fixpoints of recursive equations. Our notion is in agreement with existing notions of weak bisimulations for labelled transition systems, probabilistic and weighted systems, and simple Segala systems.Comment: final versio

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Representing Guardedness in Call-By-Value

    Get PDF
    Like the notion of computation via (strong) monads serves to classify various flavours of impurity, including exceptions, non-determinism, probability, local and global store, the notion of guardedness classifies well-behavedness of cycles in various settings. In its most general form, the guardedness discipline applies to general symmetric monoidal categories and further specializes to Cartesian and co-Cartesian categories, where it governs guarded recursion and guarded iteration respectively. Here, even more specifically, we deal with the semantics of call-by-value guarded iteration. It was shown by Levy, Power and Thielecke that call-by-value languages can be generally interpreted in Freyd categories, but in order to represent effectful function spaces, such a category must canonically arise from a strong monad. We generalize this fact by showing that representing guarded effectful function spaces calls for certain parametrized monads (in the sense of Uustalu). This provides a description of guardedness as an intrinsic categorical property of programs, complementing the existing description of guardedness as a predicate on a category

    Shades of Iteration: from Elgot to Kleene

    Full text link
    Notions of iteration range from the arguably most general Elgot iteration to a very specific Kleene iteration. The fundamental nature of Elgot iteration has been extensively explored by Bloom and Esik in the form of iteration theories, while Kleene iteration became extremely popular as an integral part of (untyped) formalisms, such as automata theory, regular expressions and Kleene algebra. Here, we establish a formal connection between Elgot iteration and Kleene iteration in the form of Elgot monads and Kleene monads, respectively. We also introduce a novel class of while-monads, which like Kleene monads admit a relatively simple description in algebraic terms. Like Elgot monads, while-monads cover a large variety of models that meaningfully support while-loops, but may fail the Kleene algebra laws, or even fail to support a Kleen iteration operator altogether.Comment: Extended version of the accepted one for "Recent Trends in Algebraic Development Techniques - 26th IFIP WG 1.3 International Workshop, WADT 2022

    Unguarded Recursion on Coinductive Resumptions

    Full text link
    We study a model of side-effecting processes obtained by starting from a monad modelling base effects and adjoining free operations using a cofree coalgebra construction; one thus arrives at what one may think of as types of non-wellfounded side-effecting trees, generalizing the infinite resumption monad. Correspondingly, the arising monad transformer has been termed the coinductive generalized resumption transformer. Monads of this kind have received some attention in the recent literature; in particular, it has been shown that they admit guarded iteration. Here, we show that they also admit unguarded iteration, i.e. form complete Elgot monads, provided that the underlying base effect supports unguarded iteration. Moreover, we provide a universal characterization of the coinductive resumption monad transformer in terms of coproducts of complete Elgot monads.Comment: 47 pages, extended version of http://www.sciencedirect.com/science/article/pii/S157106611500079
    corecore