8,491 research outputs found

    Constraints on the duality relation from ACT cluster data

    Full text link
    The cosmic distance-duality relation (CDDR), dL(z)(1+z)2/dA(z)=ηd_L(z) (1 + z)^{2}/d_{A}(z) = \eta, where η=1\eta = 1 and dL(z)d_L(z) and dA(z)d_A(z) are, respectively, the luminosity and the angular diameter distances, holds as long as the number of photons is conserved and gravity is described by a metric theory. Testing such hypotheses is, therefore, an important task for both cosmology and fundamental physics. In this paper we use 91 measurements of the gas mass fraction of galaxy clusters recently reported by the Atacama Cosmology Telescope (ACT) survey along with type Ia supernovae observations of the Union2.1 compilation to probe a possible deviation from the value η=1\eta = 1. Although in agreement with the standard hyphothesis, we find that this combination of data tends to favor negative values of η\eta which might be associated with some physical processes increasing the number of photons and modifying the above relation to dL<(1+z)2dAd_L < (1+z)^2d_A.Comment: 4 pages, 2 figures, 2 table

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200

    Cosmic homogeneity: a spectroscopic and model-independent measurement

    Get PDF
    Cosmology relies on the Cosmological Principle, i.e., the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this Letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh\theta_{\rm h}. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh\theta_{\rm h} varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.Comment: 5 pages, 2 figures, Version accepted by MNRA

    Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    Full text link
    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.Comment: 9 pages, 6 figures, 5 tables, corrected typos, as published in Phys. Rev.

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Gluon saturation and the Froissart bound: a simple approach

    Full text link
    At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale QsQ_s. In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to describe the high energy experimental data on pp/ppˉpp/p\bar{p} total cross sections.Comment: 6 pages, 5 figures. Includes additional figures, discussion and reference

    G\"{o}del-type solutions in hybrid metric-Palatini gravity

    Full text link
    In this paper, the hybrid metric-Palatini gravity is an approach to modified gravity in which is added to the usual Einstein-Hilbert action a supplementary term containing a Palatini-type correction of the form f(R,T)f({\cal R},T). Here, R{\cal R} is the Palatini curvature scalar, which is constructed from an independent connection and TT is the trace of the energy-momentum tensor. This theory describes a non-minimal coupling between matter and geometry. The modified Einstein field equations in this hybrid metric-Palatini approach are obtained. Then, it is investigated whether this modified theory of gravity and its field equations allow G\"{o}del-type solutions, which essentially lead to violation of causality. Considering physically well-motivated matter sources, causal and non-causal solutions are explored.Comment: 14 pages, accepted for publication in EP
    • …
    corecore