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ABSTRACT
Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is
homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies
should approach a homogeneous scaling with volume at sufficiently large scales. Testing
homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying
the current cosmic acceleration and structure formation of the Universe. In this letter, we use
the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-
independent measurements of the angular homogeneity scale θh. Applying four statistical
estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62
is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a
smoother Universe in the past. These results are in agreement with the foundations of the
standard cosmological paradigm.
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1 IN T RO D U C T I O N

The Cosmological Principle constitutes one of the most fundamen-
tal pillars of modern cosmology. In past decades, it has been in-
directly established as a plausible physical assumption, given the
observational success of the standard �CDM cosmology, which
assumes large-scale homogeneity and isotropy, with structure for-
mation described via perturbations. Although isotropy has been di-
rectly tested (Blake & Wall 2002; Bernui, Oliveira & Pereira 2014;
Bengaly 2016; Schwarz et al. 2016; Tiwari & Nusser 2016; Bengaly
et al. 2017; Bernal, Cardenas & Motta 2017; Javanmardi & Kroupa
2017), homogeneity is much harder to probe by observations (see
e.g. Clarkson & Maartens 2010; Maartens 2011; Clarkson 2012).

As is well known, the smaller the scale we observe, the clumpier
the universe appears. However, non-uniformities, such as groups
and clusters of galaxies, voids, walls, and filaments, are expected
in a Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) universe ac-
cording to cosmological simulations. In such a background, a tran-
sition scale is also expected, above which the patterns composed by
these structures become smoother, eventually becoming indistin-
guishable from a random distribution of sources. This homogeneity
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scale rh has been identified and estimated at 70–150 Mpc h−1, us-
ing data from several galaxy and quasar surveys (Hogg et al. 2005;
Scrimgeour et al. 2012; Nadathur 2013; Alonso et al. 2015; Pandey
& Sarkar 2015; Laurent et al. 2016; Sarkar & Pandey 2016; Ntelis
2017), although other authors have claimed no evidence for it (Sylos
Labini, Montuori & Pietronero 1998; Sylos Labini 2011; Park et al.
2017). In the context of the �CDM paradigm, an upper limit for
the homogeneity scale was estimated by Yadav, Bagla & Khandai
(2010) to be rh ∼ 260 Mpc h−1.

Tests of homogeneity of the matter distribution by counting
sources in spheres or spherical caps are not direct tests of geometric
homogeneity, i.e. of the Cosmological Principle. Source counts on
spatial hypersurfaces inside the past lightcone cannot be accessed
by this method, since the counts are restricted to the intersection
of the past lightcone with the spatial hypersurfaces. Instead, source
counts provide consistency tests: if the count data show that the
matter distribution does not approach homogeneity on large scales,
then this can falsify the Cosmological Principle. Alternatively, if
observations confirm an approach to count homogeneity, then this
strengthens the evidence for geometric homogeneity – but cannot
prove it. A test of homogeneity of the galaxy distribution that does
probe inside the past lightcone has been developed by Heavens,
Jimenez & Maartens (2011) and Hoyle et al. (2012) – but this test
is unable to determine a homogeneity scale.
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Table 1. The six redshift bins used in the
analysis and their properties: mean redshift,
bin width, and number of galaxies.

z̄ Redshift bins Ngalaxies

0.465 0.46–0.47 22 551
0.495 0.49–0.50 31 763
0.525 0.52–0.53 32 794
0.555 0.55–0.56 29 486
0.585 0.58–0.59 23 997
0.615 0.61–0.62 18 800

When a length-scale rh is used to probe homogeneity, a further
assumption is made – a fiducial FLRW model is assumed a pri-
ori, in order to convert redshifts and angles to distances. In order
to circumvent this model dependence, one can use an angular ho-
mogeneity scale θh (Alonso et al. 2014). It was shown by Alonso
et al. (2015) that the θh determined from the 2MASS photometric
catalogue is consistent with �CDM-based mock samples within
90 per cent confidence level.

In this letter, we make tomographic measurements of θh in the
Luminous Red Galaxies (LRG) sample from the Baryon Oscillation
Spectroscopic Survey (BOSS), data release DR12. Because DR12
is a dense, deep galaxy catalogue covering roughly 25 per cent of
the sky, it provides an excellent probe of the large-scale galaxy dis-
tribution, allowing us to make robust measurements in six very thin
(�z = 0.01), separated redshift shells in the interval 0.46 < z < 0.62.
This also avoids the additional correlations that would arise due to
projection effects (Sarkar & Pandey 2016; Carvalho et al. 2016,
2017). To our knowledge, this is the first time that the characteris-
tic homogeneity scale is obtained with a spectroscopic and model-
independent measurement, at intermediate redshifts. In addition, we
are able to determine the redshift evolution of θh. We ensure further
robustness by using four different estimators, which produce results
that are compatible with each other and with the predictions of stan-
dard cosmology, without assuming any cosmological model a priori.

2 A NA LY SIS

2.1 Observational data

The total effective area covered by BOSS DR12 is 9329 deg2, with
completeness parameter c > 0.7. As in previous BOSS data releases,
DR12 is divided into two target samples: LOWZ (galaxies up to
z � 0.4) and CMASS (massive galaxies with 0.4 < z < 0.7). They
cover different regions in the sky, named north and south galactic
cap. Here, we are interested in exploring the homogeneity transition
at redshifts z > 0.46, and we use only the north galactic cap of the
CMASS LRG sample.

We divide the DR12 CMASS sample into six thin redshift bins
of width �z = 0.01, between 0.46 < z < 0.62. As observed in
Table 1, the number of galaxies in each bin is Ngalaxies ≥ 18 800, thus
providing good statistical performance for the analysis. Moreover,
we choose non-contiguous bins to suppress correlations between
neighbouring bins.

2.2 Methodology

For a homogeneous angular distribution, the number counts in
spherical caps of angular radius θ are given by

N̄(θ ) = n̄ A(θ ), A(θ ) = 2π(1 − cos θ ), (1)

where n̄ is the angular number density and A is the solid angle of the
cap. If the observed number is N, we define the scaled number count
N = N/N̄ , which is obtained in four different ways as presented
below. The correlation dimension is

D2(θ ) ≡ d ln N

d ln θ
= d lnN

d ln θ
+ θ sin θ

1 − cos θ
, (2)

where the second equality follows from equation (1). The homoge-
neous limit is

D2h(θ ) = θ sin θ

1 − cos θ
� 2, (3)

where the approximation is accurate to a sub-percent level for θ ≤
0.34 rad, i.e. ∼20◦.

Estimators for N are defined below, based on their counterparts
for rh (Alonso et al. 2015; Laurent et al. 2016; Ntelis 2017). In
order to estimate the observational results, we need to compare
the observational data, previously described, with mock catalogues.
In our analysis, we use twenty random catalogues, generated by a
Poisson distribution with the same geometry and completeness as
the SDSS-DR121.

2.2.1 Average

This is the most common approach in the literature (Alonso et al.
2014; Ntelis 2017). We define a cap in the sky of a given angular
separation θ around one galaxy, counting how many galaxies are
inside this region. We repeat the process considering each galaxy as
the centre (‘cen’) of a cap for different angular separation values,
and for each redshift bin, thus obtaining a number count average in
each case. The same process is replicated for the random catalogue,
and we define the estimator as the ratio of the averages:

N (<θ )Ave ≡
∑

i Nobs
i cen/M

obs
cen∑

i N ran
i cen/M

ran
cen

, (4)

where the total number of galaxies used as centres of caps are equal
in both catalogues, Mobs

cen = M ran
cen. Then, we calculate D2(θ )Ave via

equation (2). Finally, we repeat the previous steps for twenty random
catalogues, obtaining a mean value and a standard deviation for
D2(θ )Ave.

2.2.2 Centre

First, we calculate the ratio of the observed and random counts-in-
caps centred on the first galaxy, using the equivalent position in the
random catalogue. Then, we repeat the process for each centre in
both catalogues, obtaining

N (<θ )Cen ≡ 1

M ran
cen

∑ Nobs
i cen

N ran
i cen

. (5)

We calculate D2(θ )Cen via equation (2), and then repeat the previous
steps for twenty random data sets in order to calculate its mean and
standard deviation.

2.2.3 Peebles–Hauser (PH)

We follow the Peebles–Hauser (Peebles & Hauser 2000) estimator,
but instead of using the number of galaxies, we estimate the scaled

1 https://data.sdss.org/sas/dr12/boss/lss/
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Figure 1. Correlation dimension for the four estimators, in the redshift bin
0.49 < z < 0.50. The continuous lines represent the polynomial fit performed
for each catalogue.

counts-in-caps by the number of pairs within a given angular sep-
aration in the catalogue. We define DD(θ ) as the number of pairs
of galaxies (for a given θ ) normalized to the total number of pairs,
Mobs(Mobs − 1)/2. We define RR(θ ) equivalently for the random
catalogue. Then

N (<θ )PH ≡
∑θ

φ=0 DD(φ)
∑θ

φ=0 RR(φ)
, (6)

and D2(θ )PH follows from equation (2). As above, this procedure
is repeated for the other random catalogues, from which we obtain
the mean and standard deviation for D2(θ )PH.

2.2.4 Landy–Szalay (LS)

We use an estimator based on the Landy–Szalay correlation func-
tion (Landy & Szalay 1993). In addition to the previous definition,
we define DR(θ ) as the number of pairs of galaxies between the
observational and random catalogues, for a given θ , normalized
by Mobs Mran. Following a similar routine to the PH estimator, we
obtain

N (<θ )LS ≡ 1 +
∑θ

φ=0[DD(φ) − 2DR(φ) + RR(φ)]
∑θ

φ=0 RR(φ)
. (7)

We again calculate D2(θ )LS via equation (2), and after repeating this
step for the other random data, we obtain the mean and standard
deviation for D2(θ )LS.

2.2.5 Estimation of θh

In order to estimate the homogeneity scale, θh, for each one of the
previous methods, we perform the following approach: we make a
model-independent polynomial fit for each D2 set, in each redshift
slice (exemplified for one redshift slice in Fig. 1). Following previ-
ous analyses (Alonso et al. 2014, 2015; Ntelis 2017), we identify
the scale of transition as the angle at which the fits of our estimator
are within one per cent of the homogeneous limit D2h given by
equation (3). Although arbitrary, the 1 per cent-criterion is widely
used in the literature, and is justified given the sample noise. Given
the values of D2h, we perform a bootstrap analysis (Efron & Gong
1983) on these values with 1000 realizations and we obtain the
mean and error with 68 per cent c.l. for the θh (Table 2).

Table 2. Measurements of the angular homogeneity scale (degrees) for
each redshift interval and estimator.

z θAve θCen θPH θLS

0.465 10.64 ± 0.09 10.70 ± 0.08 10.09 ± 0.16 10.39 ± 0.31
0.495 9.04 ± 0.09 9.11 ± 0.08 8.32 ± 0.29 8.80 ± 0.23
0.525 9.11 ± 0.10 9.38 ± 0.22 8.92 ± 0.06 8.79 ± 0.12
0.555 9.26 ± 0.20 9.47 ± 0.06 7.86 ± 0.14 9.07 ± 0.33
0.585 7.17 ± 0.34 7.52 ± 0.10 5.79 ± 0.05 6.46 ± 0.67
0.615 6.56 ± 0.10 6.72 ± 0.08 6.04 ± 0.14 6.10 ± 0.35

Figure 2. Redshift evolution of the angular homogeneity scale for the four
estimators. Data points are measurements in the redshift bins of Table 2.
The dashed line is a linear fit to the data points.

Table 3. For each estimator, the best fits of α and β in equation (8), and the
predicted extrapolation of θh at z = 0.46, 0.62.

α β θh(0.46) θh(0.62)

Average 21.93 ± 2.81 −24.62 ± 5.19 10.60 6.67
Centre 21.46 ± 2.91 −23.41 ± 5.37 10.69 6.95
PH 22.71 ± 3.04 −27.54 ± 5.61 10.04 5.63
LS 22.76 ± 3.29 −26.84 ± 6.07 10.41 6.12

3 R ESULTS

Fig. 1 presents the fits of the correlation dimension for the four
estimators, showing the crossing of the homogeneity threshold. We
illustrate only the redshift slice 0.49 < z < 0.50, since the results
for the other slices are very similar. The corresponding numerical
results for θh and their errors are shown in Table 2. We can observe
that the four estimators produce similar θh values.

Additionally, there is a clear correlation between θh and z: for
lower z, the transition angular scale increases, as illustrated in Fig. 2.
This is the expected behaviour, since matter perturbations grow
stronger in later epochs, so that the Universe should appear clumpier
as the redshift decreases. To better visualize this correlation, we
perform a linear fit,

θh(z) = α + βz, (8)

and calculate the parameters α and β for each estimator. The results
are shown in Table 3. One can see the four estimators show the same
trend and the maximum dispersion of the slopes is ∼15 per cent.
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In order to compare our results with previous model-dependent
analyses, we convert the θh measurements in Table 3 into the corre-
sponding physical distance, rh(z) = DA(z)θh(z). For the comparison,
we consider two redshifts, z = 0.46 and z = 0.62, and use the latest
best-fitting �CDM cosmology from the Planck Collaboration, with
	m = 0.308 and h = 0.678 (Planck Collaboration XIII 2016). We
obtain a spatial homogeneity scale

218 ≤rh(0.46)≤ 232 Mpc, 121 ≤rh(0.62)≤ 151 Mpc, (9)

considering the lowest and highest θh values in Table 3. These
results are compatible (within 2σ ) with the estimates in Ntelis
(2017) for the same DR12 LRG catalogue, where rh(z̄ = 0.46) =
185.1 ± 18.6 Mpc, and rh(z̄ = 0.62) = 161.7 ± 5.8 Mpc, based on
a �CDM model.

Our results are also compatible with Pandey & Sarkar (2015),
who used the DR12 Main Galaxy Sample to find rh � 206 Mpc.
In addition, they are consistent with the upper limit estimate of
rh � 383 Mpc (Yadav et al. 2010). We emphasize that these analyses
were performed in a model-dependent framework (�CDM) to con-
vert redshifts and angles into distances, whereas our analysis only
requires angular information of the galaxy distribution. Therefore,
our results are consistent with the standard cosmological scenario
even without assuming a particular FLRW model.

4 C O N C L U S I O N

The assumption of large-scale spatial homogeneity and isotropy is
at the root of modern cosmology. Although spatial isotropy has
been tested using different methods and probes, the homogeneity
hypothesis is much more difficult to probe. Tests that are based on
source counts in spheres or caps can be classified as consistency
tests of the Cosmological Principle, since they do not probe inside
the past lightcone. Tests based on a length-scale rh must further as-
sume a fiducial FRLW model, in order to relate redshifts and angles
to distances. In this letter, we estimated the cosmological angular
homogeneity scale, following an approach that avoids the need to
assume a fiducial cosmological model, and that is based only on
observable quantities. We used a sample of 159 391 LRG provided
by BOSS DR12. To perform our measurements, we divided the
sample into six redshift bins in the range 0.46 ≤ z ≤ 0.62, which
provides at least 18 800 galaxies per bin. Our analysis was carried
out using four different estimators to compute the correlation di-
mension, which showed a well agreement between them (see Fig. 1
and Table 2).

By using non-contiguous redshift slices, we suppress correla-
tions between the slices, which otherwise could bias the results.
The thinness of the redshift bins, �z = 0.01, means that we do
not falsely introduce homogenization by projecting sources that
have large radial separation into the same spherical cap. In ad-
dition, evolution in these bins can safely be ignored. Redshift-
space distortions will move galaxies into and out of redshift
bins, but the effect should average out, given the high number of
galaxies.

Thanks to the depth of the data sample, we were also able
to investigate the redshift evolution of the angular homogeneity
scale, shown in Fig. 2. We found a clear correlation between θh

and z, in which the lower the redshift the larger the transition
angular scale. We applied a simple linear fit to θh(z) and cal-
culated the expected transition scales at z = 0.4 and z = 0.6,
shown in equation (9). We compared our measurements at these
redshifts with previous model-dependent analyses of the same
data set, by transforming θh into rh. Even without assuming a

fiducial cosmological model, our results are in good agreement
with transition homogeneity scales obtained in Pandey & Sarkar
(2015) and Ntelis (2017), as well as with the theoretical up-
per limit prediction for the standard �CDM cosmology (Yadav
et al. 2010).

In summary, we showed that the hypothesis of large-scale ho-
mogeneity in the LRG distribution seems to be in good concor-
dance with the current cosmological scenario. The method dis-
cussed here, which is a spectroscopic and tomographic extension
of the method originally proposed in Alonso et al. (2014), can
be applied to current and upcoming surveys, such as SDSS-IV
(eBOSS) (Dawson et al. 2016), J-PAS (Benı́tez et al. 2014), Euclid
(Amendola et al. 2016), LSST (Abell et al. 2009), and SKA
(Maartens et al. 2015).
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