6,873 research outputs found
Multilayer Complex Network Descriptors for Color-Texture Characterization
A new method based on complex networks is proposed for color-texture
analysis. The proposal consists on modeling the image as a multilayer complex
network where each color channel is a layer, and each pixel (in each color
channel) is represented as a network vertex. The network dynamic evolution is
accessed using a set of modeling parameters (radii and thresholds), and new
characterization techniques are introduced to capt information regarding within
and between color channel spatial interaction. An automatic and adaptive
approach for threshold selection is also proposed. We conduct classification
experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT.
Results among various literature methods are compared, including deep
convolutional neural networks with pre-trained architectures. The proposed
method presented the highest overall performance over the 5 datasets, with 97.7
of mean accuracy against 97.0 achieved by the ResNet convolutional neural
network with 50 layers.Comment: 20 pages, 7 figures and 4 table
Strong curvature singularities in quasispherical asymptotically de Sitter dust collapse
We study the occurrence, visibility, and curvature strength of singularities
in dust-containing Szekeres spacetimes (which possess no Killing vectors) with
a positive cosmological constant. We find that such singularities can be
locally naked, Tipler strong, and develop from a non-zero-measure set of
regular initial data. When examined along timelike geodesics, the singularity's
curvature strength is found to be independent of the initial data.Comment: 16 pages, LaTeX, uses IOP package, 2 eps figures; accepted for
publication in Class. Quantum Gra
Hysteretic Optimization For Spin Glasses
The recently proposed Hysteretic Optimization (HO) procedure is applied to
the 1D Ising spin chain with long range interactions. To study its
effectiveness, the quality of ground state energies found as a function of the
distance dependence exponent, , is assessed. It is found that the
transition from an infinite-range to a long-range interaction at
is accompanied by a sharp decrease in the performance . The transition is
signaled by a change in the scaling behavior of the average avalanche size
observed during the hysteresis process. This indicates that HO requires the
system to be infinite-range, with a high degree of interconnectivity between
variables leading to large avalanches, in order to function properly. An
analysis of the way auto-correlations evolve during the optimization procedure
confirm that the search of phase space is less efficient, with the system
becoming effectively stuck in suboptimal configurations much earlier. These
observations explain the poor performance that HO obtained for the
Edwards-Anderson spin glass on finite-dimensional lattices, and suggest that
its usefulness might be limited in many combinatorial optimization problems.Comment: 6 pages, 9 figures. To appear in JSTAT. Author website:
http://www.bgoncalves.co
Different faces of the phantom
The SNe type Ia data admit that the Universe today may be dominated by some
exotic matter with negative pressure violating all energy conditions. Such
exotic matter is called {\it phantom matter} due to the anomalies connected
with violation of the energy conditions. If a phantom matter dominates the
matter content of the universe, it can develop a singularity in a finite future
proper time. Here we show that, under certain conditions, the evolution of
perturbations of this matter may lead to avoidance of this future singularity
(the Big Rip). At the same time, we show that local concentrations of a phantom
field may form, among other regular configurations, black holes with
asymptotically flat static regions, separated by an event horizon from an
expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200
New mathematical framework for spherical gravitational collapse
A theorem, giving necessary and sufficient condition for naked singularity
formation in spherically symmetric non static spacetimes under hypotheses of
physical acceptability, is formulated and proved. The theorem relates existence
of singular null geodesics to existence of regular curves which are
super-solutions of the radial null geodesic equation, and allows us to treat
all the known examples of naked singularities from a unified viewpoint. New
examples are also found using this approach, and perspectives are discussed.Comment: 8 pages, LaTeX2
The anisotropic XY model on the inhomogeneous periodic chain
The static and dynamic properties of the anisotropic XY-model on
the inhomogeneous periodic chain, composed of cells with different
exchange interactions and magnetic moments, in a transverse field are
determined exactly at arbitrary temperatures. The properties are obtained by
introducing the Jordan-Wigner fermionization and by reducing the problem to a
diagonalization of a finite matrix of order. The quantum transitions are
determined exactly by analyzing, as a function of the field, the induced
magnetization 1/n\sum_{m=1}^{n}\mu_{m}\left ( denotes
the cell, the site within the cell, the magnetic moment at site
within the cell) and the spontaneous magnetization which is obtained from the correlations for large spin separations. These results,
which are obtained for infinite chains, correspond to an extension of the ones
obtained by Tong and Zhong(\textit{Physica B} \textbf{304,}91 (2001)). The
dynamic correlations, , and the dynamic
susceptibility, are also obtained at arbitrary
temperatures. Explicit results are presented in the limit T=0, where the
critical behaviour occurs, for the static susceptibility as
a function of the transverse field , and for the frequency dependency of
dynamic susceptibility .Comment: 33 pages, 13 figures, 01 table. Revised version (minor corrections)
accepted for publiction in Phys. Rev.
Happiness is assortative in online social networks
Social networks tend to disproportionally favor connections between
individuals with either similar or dissimilar characteristics. This propensity,
referred to as assortative mixing or homophily, is expressed as the correlation
between attribute values of nearest neighbour vertices in a graph. Recent
results indicate that beyond demographic features such as age, sex and race,
even psychological states such as "loneliness" can be assortative in a social
network. In spite of the increasing societal importance of online social
networks it is unknown whether assortative mixing of psychological states takes
place in situations where social ties are mediated solely by online networking
services in the absence of physical contact. Here, we show that general
happiness or Subjective Well-Being (SWB) of Twitter users, as measured from a 6
month record of their individual tweets, is indeed assortative across the
Twitter social network. To our knowledge this is the first result that shows
assortative mixing in online networks at the level of SWB. Our results imply
that online social networks may be equally subject to the social mechanisms
that cause assortative mixing in real social networks and that such assortative
mixing takes place at the level of SWB. Given the increasing prevalence of
online social networks, their propensity to connect users with similar levels
of SWB may be an important instrument in better understanding how both positive
and negative sentiments spread through online social ties. Future research may
focus on how event-specific mood states can propagate and influence user
behavior in "real life".Comment: 17 pages, 9 figure
- …