9,464 research outputs found

    Gluon saturation and the Froissart bound: a simple approach

    Full text link
    At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale QsQ_s. In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to describe the high energy experimental data on pp/ppˉpp/p\bar{p} total cross sections.Comment: 6 pages, 5 figures. Includes additional figures, discussion and reference

    A note on the cylindrical collapse of counter-rotating dust

    Full text link
    We find analytical solutions describing the collapse of an infinitely long cylindrical shell of counter-rotating dust. We show that--for the classes of solutions discussed herein--from regular initial data a curvature singularity inevitably develops, and no apparent horizons form, thus in accord with the spirit of the hoop conjecture.Comment: 8 pages, LaTeX, ijmpd macros (included), 1 eps figure; accepted for publication in Int. J. Mod. Phys.

    Multilayer Complex Network Descriptors for Color-Texture Characterization

    Full text link
    A new method based on complex networks is proposed for color-texture analysis. The proposal consists on modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT. Results among various literature methods are compared, including deep convolutional neural networks with pre-trained architectures. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.Comment: 20 pages, 7 figures and 4 table

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Characterization of the self-assembly process of hydrophobically modified dextrin

    Get PDF
    Hydrophobized dextrin, randomly substituted by long alkyl chain (C16), forms stable hydrogel nanoparticles by self-assembling in water. Hydrophobic chains, distributed along the polymer backbone, promote the formation of hydrophobic microdomains within the nanoparticles. The influence of degree of substitution with hydrophobic chains (DSC16) on nanoparticles size, colloidal stability, density, aggregation number and nanoparticle weight was studied. Size distribution was also evaluated at different pH, urea concentration and ionic strength conditions. As shown by dynamic light scattering and transmission electron microscopy, the particles are spherical having a diameter of about 20 nm. The more substituted polymer forms more densely packed hydrophobic microdomains, such that the colloidal stability (in water and PBS buffer) of nanoparticles is increased. The knowledge of the aggregate building process and the characteristics of the nanoparticles are crucial for the design of drug delivery systems.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/22242/2005, POCTI/ BIO/45356/2002

    Improving cost-efficiency for MPs density separation by zinc chloride reuse

    Get PDF
    The methodology used to extract and quantify microplastics (MPs) in aquatic systems are still not standardized. Salt saturated solutions, such as sodium chloride (NaCl), zinc chloride (ZnCl2) and/or sodium iodide (NaI), are normally added to separate dense plastics from aquatic samples. However, the most effective reagents are also the most expensive (e.g. ZnCl2 and NaI). To decrease this cost, a reuse process of the salt solutions should be applied. The reuse process has been widely investigated for the NaI solution neglecting the ZnCl2. Hence, the aim of this study was to present a simple methodology to reuse the ZnCl2 solution ensuring the efficiency of the product. Results of the present study showed that ZnCl2 solution could be reused at least five times maintaining an efficiency above 95 %. •The ZnCl2 reuse decreases the cost of the methodology.•The efficiency of ZnCl2 solution after five filtrations remains above 95 % (all polymers are detected and recovered).•The use of this salt solution is the most cost-effective methodology to isolate MPs from aquatic samples.publishe

    Self-assembled hydrogel nanoparticles for drug delivery applications

    Get PDF
    Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described
    • …
    corecore