830 research outputs found

    Essential role of the czc determinant for cadmium, cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAl 5

    Get PDF
    The mechanisms of cadmium, cobalt and zinc resistance were characterized in the plant-growth-promoting bacterium Gluconacetobacter diazotrophicus PAl 5. The resistance level of the wild-type strain was evaluated through the establishment of minimum inhibitory concentrations (MIC) of the soluble compounds CdCl2·H2O, CoCl2·6H2O and ZnCl2. Gluconacetobacter diazotrophicus PAl 5 was resistant to high concentrations of Cd, Co and Zn, with MICs of 1.2, 20 and 20 mM, respectively. Screening of an insertion library from transposon EZ-Tn5<R6Kyori/KAN-2> in the presence of ZnO revealed that the mutant GDP30H3 was unable to grow in the presence of the compound. This mutant was also highly sensitive to CdCl2·H2O, CoCl2·6H2O and ZnCl2. Molecular characterization established that the mutation affected the czcA gene, which encodes a protein involved in metal efflux. In silico analysis showed that czcA is a component of the czcCBARS operon together with four other genes. This work provides evidence of the high tolerance of G. diazotrophicus PAl 5 to heavy metalsand that czc is a determinant for metal resistance in this bacterium. [Int Microbiol 2012; 15(2):69-78

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector

    Get PDF

    Measurement of the H → γ γ and H → ZZ∗ → 4 cross-sections in pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive Higgs boson production cross section is measured in the di-photon and the Z Z∗ → 4 decay channels using 31.4 and 29.0 fb−1 of pp collision data respectively, collected with the ATLAS detector at a centre of-mass energy of √s = 13.6 TeV. To reduce the model dependence, the measurement in each channel is restricted to a particle-level phase space that closely matches the chan nel’s detector-level kinematic selection, and it is corrected for detector effects. These measured fiducial cross-sections are σfid,γ γ = 76+14 −13 fb, and σfid,4 = 2.80 ± 0.74 fb, in agreement with the corresponding Standard Model predic tions of 67.6±3.7 fb and 3.67±0.19 fb. Assuming Standard Model acceptances and branching fractions for the two chan nels, the fiducial measurements are extrapolated to the full phase space yielding total cross-sections of σ (pp → H) = 67+12 −11 pb and 46±12 pb at 13.6 TeV from the di-photon and Z Z∗ → 4 measurements respectively. The two measure ments are combined into a total cross-section measurement of σ (pp → H) = 58.2±8.7 pb, to be compared with the Stan dard Model prediction of σ (pp → H)SM = 59.9 ± 2.6 p

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Measurement of the energy asymmetry in tt¯ j production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb-1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic tt¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be - 0.043 ± 0.020 , in agreement with the SM prediction of - 0.037 ± 0.003. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits

    Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at root s = 13 TeV

    Get PDF
    This letter documents a search for flavour-changing neutral currents (FCNCs), which are strongly sup-pressed in the Standard Model, in events with a photon and a top quark with the ATLAS detector. The analysis uses data collected in pp collisions at &amp; RADIC;s =13 TeV during Run 2 of the LHC, corresponding to an integrated luminosity of 139 fb-1. Both FCNC top-quark production and decay are considered. The final state consists of a charged lepton, missing transverse momentum, a b-tagged jet, one high-momentum photon and possibly additional jets. A multiclass deep neural network is used to classify events either as signal in one of the two categories, FCNC production or decay, or as background. No significant ex-cess of events over the background prediction is observed and 95% CL upper limits are placed on the strength of left-and right-handed FCNC interactions. The 95% CL bounds on the branching fractions for the FCNC top-quark decays, estimated (expected) from both top-quark production and decay, are B(t &amp; RARR; u &amp; gamma; ) &lt; 0.85 (0.88+0.37 -0.25) x 10-5 and B(t &amp; RARR; c &amp; gamma; ) &lt; 4.2 (3.40+1.35-0.95) x 10-5 for a left-handed tq &amp; gamma; cou-pling, and B(t &amp; RARR; u &amp; gamma; ) &lt; 1.2 (1.20+0.50 -0.33) x10-5 and B(t &amp; RARR; c &amp; gamma; ) &lt; 4.5 (3.70+1.47 -1.03) x10-5 for a right-handed coupling. &amp; COPY; 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment

    Get PDF
    This paper presents updated Monte Carlo configurations used to model the production of single electroweak vector bosons (W, Z/γ∗) in association with jets in proton-proton collisions for the ATLAS experiment at the Large Hadron Collider. Improvements pertaining to the electroweak input scheme, parton-shower splitting kernels and scale-setting scheme are shown for multi-jet merged configurations accurate to next-to-leading order in the strong and electroweak couplings. The computational resources required for these set-ups are assessed, and approximations are introduced resulting in a factor three reduction of the per-event CPU time without affecting the physics modelling performance. Continuous statistical enhancement techniques are introduced by ATLAS in order to populate low cross-section regions of phase space and are shown to match or exceed the generated effective luminosity. This, together with the lower per-event CPU time, results in a 50% reduction in the required computing resources compared to a legacy set-up previously used by the ATLAS collaboration. The set-ups described in this paper will be used for future ATLAS analyses and lay the foundation for the next generation of Monte Carlo predictions for single vector-boson plus jets production. [Figure not available: see fulltext.]
    corecore