127 research outputs found

    Thermal Solar Energy Systems for Space Heating of Buildings

    Get PDF
    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating

    Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications

    Get PDF
    Air conditioning systems have a major impact on energy demand. With fossil fuels fast depleting, it is imperative to look for cooling systems that require less high-grade energy for their operation. In this context, absorption cooling systems have become increasingly popular in recent years from the viewpoints of energy and environment. Two types of the absorption chillers, the single effect and the half-effect systems, can operate using low temperature hot water. This paper presents the simulation results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors. The complete systems (solar collectors and absorption cooling system) were simulated using a developed software program. The energy and exergy analysis is carried out for each component of the two systems. When evaporator temperature is maintained constant at 5 C and the condenser temperature is fixed at 28 C, 32 C and 36 C respectively the percentage of the used energy covered by solar collectors and the percentage of auxiliary heating load were calculated versus time of day

    Thermal Solar Energy Systems for Space Heating of Buildings

    Get PDF
    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating

    Hydrogen Production from H2SO4 Cycle, and Solar Parabolic Trough Collector System in City of Tamanrasset.

    Get PDF
    Covering the energy demands for the future generation under Algerian climate became a strong debate in the last three years, especially after oil crisis. One of the solutions is exploiting solar energy due to the solar irradiation availability in the country. Application of this renewable energy resource is used to produce electricity through photovoltaic panels in different zones of Algeria. However, exploiting thermal solar energy is considered one of the most important existing technologies to produce green energy sources such as hydrogen. This paper is focusing in coupling between solar parabolic trough collector systems, with H2SO4 thermo-chemical cycle to produce Hydrogen. Both seasonally and annually, of solar irradiation have been taken from different positions in city of Tamanrasset which is located in south of Algeria. The obtained results explain the possibility to produce hydrogen from H2SO4 thermo-chemical cycle through thermal solar energy, with considerable efficiency instead using nuclear energy. Keywords: solar energy, hydrogen production, H2SO4 cycle, Tamenrraset. JEL Classifications: Q42, Q4

    Adsorption of rhodamine 6G and humic acids on composite bentonite-alginate in single and binary systems

    Get PDF
    In this work, the preparation, characterization, and sorption of rhodamine 6G and humic acids on a composite sodium alginate-bentonite were investigated. Their structure and morphology were analyzed by several techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, and N-2 adsorption at - 196 degrees C. A synergetic sorption mechanism was observed in binary systems; humic acids adsorption was enhanced by the presence of Rh6G in the mixture. The kinetic studies revealed that the sorption follows a pseudo-first-order kinetic model and the sorption capacities of Rh6G increased with the pH value. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for Rh6G up to 429.5 mg/g at 20 degrees C. On the basis of the data of the present investigation, it is possible to conclude that the composite exhibited excellent affinity for the dye and humic acids, and it can be applied to treat wastewater containing dye and natural organic matter.AG is grateful for financial support from Santander Bank through the Research Intensification Program

    Binary Fingerprints at Fluctuation-Enhanced Sensing

    Get PDF
    We developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 25 thousands to 1 million. To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.Comment: submitted for publicatio

    Design and Simulation of a Multi-Sensor System Growing a Plurality of Heater Chips on the Same Dielectric Membrane

    Get PDF
    In micro-sensors, the Micro Hotplate (MHP) is a crucial component, in particularly gas sensors. To control the temperature of the sensing layer, micro-heater is used in metal oxide gas (MOX) sensors as a hotplate. The temperature should be in the requisite temperature range over the heater area. This allows detection of the resistive changes as a function of varying concentration of different gases. Thus, their design is a very important aspect. In this paper, we presented the design and simulation results of a platinum combinative meander-spiral micro heater for a WO3 gas sensor. The objective of this paper is also to model a multi-sensor while growing a plurality of heater chips on the same membrane to improve gas sensors selectivity performance. Four different heating voltages were applied in order to attain four maximum temperatures required to detect O3, H2S, CO and NO2, by a WO3 multi- sensor

    Design and Simulation of a Multi-Sensor System Growing a Plurality of Heater Chips on the Same Dielectric Membrane

    Get PDF
    In micro-sensors, the Micro Hotplate (MHP) is a crucial component, in particularly gas sensors. To control the temperature of the sensing layer, micro-heater is used in metal oxide gas (MOX) sensors as a hotplate. The temperature should be in the requisite temperature range over the heater area. This allows detection of the resistive changes as a function of varying concentration of different gases. Thus, their design is a very important aspect. In this paper, we presented the design and simulation results of a platinum combinative meander-spiral micro heater for a WO3 gas sensor. The objective of this paper is also to model a multi-sensor while growing a plurality of heater chips on the same membrane to improve gas sensors selectivity performance. Four different heating voltages were applied in order to attain four maximum temperatures required to detect O3, H2S, CO and NO2, by a WO3 multi- sensor

    Draft genome sequence of Thermoactinomyces sp. strain AS95 isolated from a Sebkha in Thamelaht, Algeria

    Get PDF
    The members of the genus Thermoactinomyces are known for their protein degradative capacities. Thermoactinomyces sp. strain AS95 is a Gram-positive filamentous bacterium, isolated from moderately saline water in the Thamelaht region of Algeria. This isolate is a thermophilic aerobic bacterium with the capacity to produce extracellular proteolytic enzymes. This strain exhibits up to 99 % similarity with members of the genus Thermoactinomyces, based on 16S rRNA gene sequence similarity. Here we report on the phenotypic features of Thermoactinomyces sp. strain AS95 together with the draft genome sequence and its annotation. The genome of this strain is 2,558,690 bp in length (one chromosome, but no plasmid) with an average G + C content of 47.95 %, and contains 2550 protein-coding and 60 RNA genes together with 64 ORFs annotated as proteases.The Genomics Research Institute and the University of Pretoria (OKIB, DAC, TPM), the National Research Foundation (MWVG, DAC, TPM). The Algerian Ministry of Higher Education and Scientific Research is also acknowledged for funding (MAG and KK).http://www.standardsingenomics.org/index.php/sigenam2016BiochemistryGenetic
    corecore