499 research outputs found

    Broadband modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability

    Get PDF
    The magnetar model has been proposed to explain the apparent energy injection in the X-ray light curves of short gamma-ray bursts (SGRBs), but its implications across the full broadband spectrum are not well explored. We investigate the broadband modelling of four SGRBs with evidence for energy injection in their X-ray light curves, applying a physically motivated model in which a newly formed magnetar injects energy into a forward shock as it loses angular momentum along open field lines. By performing an order of magnitude search for the underlying physical parameters in the blast wave, we constrain the characteristic break frequencies of the synchrotron spectrum against their manifestations in the available multi-wavelength observations for each burst. The application of the magnetar energy injection profile restricts the successful matches to a limited family of models that are self-consistent within the magnetic dipole spin-down framework.We produce synthetic light curves that describe how the radio signatures of these SGRBs ought to have looked given the restrictions imposed by the available data, and discuss the detectability of these signatures with present-day and near-future radio telescopes. Our results show that both the Atacama Large Millimetre Array and the upgraded Very Large Array are now sensitive enough to detect the radio signature within two weeks of trigger in most SGRBs, assuming our sample is representative of the population as a whole. We also find that the upcoming Square Kilometre Array will be sensitive to depths greater than those of our lower limit predictions.Comment: 15 pages, 4 figures, 6 tables, accepted for publication in MNRA

    The Environments of the Most Energetic Gamma-Ray Bursts

    Get PDF
    We analyze the properties of a sample of long gamma-ray bursts (LGRBs) detected by the Fermi satellite that have a spectroscopic redshift and good follow-up coverage at both X-ray and optical/nIR wavelengths. The evolution of LGRB afterglows depends on the density profile of the external medium, enabling us to separate wind or ISM-like environments based on the observations. We do this by identifying the environment that provides the best agreement between estimates of pp, the index of the underlying power-law distribution of electron energies, as determined by the behavior of the afterglow in different spectral/temporal regimes. At 11 rest-frame hours after trigger, we find a roughly even split between ISM-like and wind-like environments. We further find a 2σ\sigma separation in the prompt emission energy distributions of wind-like and ISM-like bursts. We investigate the underlying physical parameters of the shock, and calculate the (degenerate) product of density and magnetic field energy (ϵB\epsilon_B). We show that ϵB\epsilon_B must be 102\ll 10^{-2} to avoid implied densities comparable to the intergalactic medium. Finally, we find that the most precisely constrained observations disagree on pp by more than would be expected based on observational errors alone. This suggests additional sources of error that are not incorporated in the standard afterglow theory. For the first time, we provide a measurement of this intrinsic error which can be represented as an error in the estimate of pp of magnitude 0.25±0.040.25 \pm 0.04. When this error is included in the fits, the number of LGRBs with an identified environment drops substantially, but the equal division between the two types remains.Comment: 31 pages (+14 appendix), 9 figures, 6 tables. Accepted for publication in Ap

    Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation

    Full text link
    An intrinsic correlation has been identified between the luminosity and duration of plateaus in the X-ray afterglows of Gamma-Ray Bursts (GRBs; Dainotti et al. 2008), suggesting a central engine origin. The magnetar central engine model predicts an observable plateau phase, with plateau durations and luminosities being determined by the magnetic fields and spin periods of the newly formed magnetar. This paper analytically shows that the magnetar central engine model can explain, within the 1σ\sigma uncertainties, the correlation between plateau luminosity and duration. The observed scatter in the correlation most likely originates in the spread of initial spin periods of the newly formed magnetar and provides an estimate of the maximum spin period of ~35 ms (assuming a constant mass, efficiency and beaming across the GRB sample). Additionally, by combining the observed data and simulations, we show that the magnetar emission is most likely narrowly beamed and has \lesssim20% efficiency in conversion of rotational energy from the magnetar into the observed plateau luminosity. The beaming angles and efficiencies obtained by this method are fully consistent with both predicted and observed values. We find that Short GRBs and Short GRBs with Extended Emission lie on the same correlation but are statistically inconsistent with being drawn from the same distribution as Long GRBs, this is consistent with them having a wider beaming angle than Long GRBs.Comment: MNRAS Accepte

    Metastability of life

    Get PDF
    The physical idea of the natural origin of diseases and deaths has been presented. The fundamental microscopical reason is the destruction of any metastable state by thermal activation of a nucleus of a nonreversable change. On the basis of this idea the quantitative theory of age dependence of death probability has been constructed. The obtained simple Death Laws are very accurately fulfilled almost for all known diseases.Comment: 3 pages, 4 figure

    A multi-messenger model for neutron star - black hole mergers

    Full text link
    We present a semi-analytic model for predicting kilonova light curves from the mergers of neutron stars with black holes (NSBH). The model is integrated into the MOSFiT platform, and can generate light curves from input binary properties and nuclear equation-of-state considerations, or incorporate measurements from gravitational wave (GW) detectors to perform multi-messenger parameter estimation. The rapid framework enables the generation of NSBH kilonova distributions from binary populations, light curve predictions from GW data, and statistically meaningful comparisons with an equivalent BNS model in MOSFiT. We investigate a sample of kilonova candidates associated with cosmological short gamma-ray bursts, and demonstrate that they are broadly consistent with being driven by NSBH systems, though most have limited data. We also perform fits to the very well sampled GW170817, and show that the inability of an NSBH merger to produce lanthanide-poor ejecta results in a significant underestimate of the early (< 2 days) optical emission. Our model indicates that NSBH-driven kilonovae may peak up to a week after merger at optical wavelengths for some observer angles. This demonstrates the need for early coverage of emergent kilonovae in cases where the GW signal is either ambiguous or absent; they likely cannot be distinguished from BNS mergers by the light curves alone from ~2 days after the merger. We also discuss the detectability of our model kilonovae with the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST).Comment: 14 pages, 6 figures, 2 tables. Accepted for publication in MNRAS. This is the author's final submitted version. The model code is available through MOSFiT at https://github.com/guillochon/MOSFi

    Empirical maximum lifespan of earthworms is twice that of mice

    Get PDF
    We considered a Gompertzian model for the population dynamics of Eisenia andrei case-cohorts in artificial OECD soil under strictly controlled conditions. The earthworm culture was kept between 18 and 22°C at a constant pH of 5.0. In all, 77 lumbricids were carefully followed for almost 9 years, until the oldest died. The Eisenia median longevity is 4.25 years and the oldest specimen was 8.73 years. Eisenia cocoons were hand-sorted every 3 weeks, washed in distilled water, placed in Petri dishes, and counted. Regular removal did not reduce breeding. Each fertile cocoon contained on average two or three embryos. The failure rates (mortality and infertility percentages) are smooth power functions where the rate at time (n + 1) captured most of the phenomenology of the previous rate at time n, as expected by the considered law, but not at both the beginning and the end of this long-term laboratory study

    The Heumann-Hotzel model for aging revisited

    Full text link
    Since its proposition in 1995, the Heumann-Hotzel model has remained as an obscure model of biological aging. The main arguments used against it were its apparent inability to describe populations with many age intervals and its failure to prevent a population extinction when only deleterious mutations are present. We find that with a simple and minor change in the model these difficulties can be surmounted. Our numerical simulations show a plethora of interesting features: the catastrophic senescence, the Gompertz law and that postponing the reproduction increases the survival probability, as has already been experimentally confirmed for the Drosophila fly.Comment: 11 pages, 5 figures, to be published in Phys. Rev.

    Evidence for the Gompertz Curve in the Income Distribution of Brazil 1978-2005

    Full text link
    This work presents an empirical study of the evolution of the personal income distribution in Brazil. Yearly samples available from 1978 to 2005 were studied and evidence was found that the complementary cumulative distribution of personal income for 99% of the economically less favorable population is well represented by a Gompertz curve of the form G(x)=exp[exp(ABx)]G(x)=\exp [\exp (A-Bx)], where xx is the normalized individual income. The complementary cumulative distribution of the remaining 1% richest part of the population is well represented by a Pareto power law distribution P(x)=βxαP(x)= \beta x^{-\alpha}. This result means that similarly to other countries, Brazil's income distribution is characterized by a well defined two class system. The parameters AA, BB, α\alpha, β\beta were determined by a mixture of boundary conditions, normalization and fitting methods for every year in the time span of this study. Since the Gompertz curve is characteristic of growth models, its presence here suggests that these patterns in income distribution could be a consequence of the growth dynamics of the underlying economic system. In addition, we found out that the percentage share of both the Gompertzian and Paretian components relative to the total income shows an approximate cycling pattern with periods of about 4 years and whose maximum and minimum peaks in each component alternate at about every 2 years. This finding suggests that the growth dynamics of Brazil's economic system might possibly follow a Goodwin-type class model dynamics based on the application of the Lotka-Volterra equation to economic growth and cycle.Comment: 22 pages, 15 figures, 4 tables. LaTeX. Accepted for publication in "The European Physical Journal B
    corecore