9 research outputs found

    Signature of a randomness-driven spin-liquid state in a frustrated magnet

    Full text link
    Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Herein, we present our thermodynamic and muon spin relaxation measurements, complemented by ab initio density functional theory and exact diagonalization results, on the recently synthesized frustrated antiferromagnet Li4CuTeO6, in which Cu2+ ions (S = 1/2) constitute disordered spin chains and ladders along the crystallographic [101] direction with weak random inter-chain couplings. Our thermodynamic experiments detect neither long-range magnetic ordering nor spin freezing down to 45 mK despite the presence of strong antiferromagnetic interaction between Cu2+ moments leading to a large effective Curie-Weiss temperature of -154 K. Muon spin relaxation results are consistent with thermodynamic results. The temperature and magnetic field scaling of magnetization and specific heat reveal a data collapse pointing towards the presence of random-singlets within a disorder-driven correlated and dynamic ground-state in this frustrated antiferromagnet

    Pt-mediated Reversible Reduction and Expansion of CeO2 in Pt Nanoparticle/mesoporous CeO2 Catalyst: In situ X-ray Spectroscopy and Diffraction Studies under Redox (H2 and O2) Atmospheres

    No full text
    Here, we report the Pt nanoparticle mediated reduction (oxidation) and lattice expansion (contraction) of mesoporous CeO2 under H 2 (O2) atmospheres and in the temperature range of 50-350 C. We found that CeO2 in the Pt/CeO2 catalyst was partially reduced in H2 (and fully oxidized back in O2) as demonstrated by several in situ techniques: APXPS spectra (4d core levels) for the topmost surface, NEXAFS total electron yield spectra (at the M5,4 edges) in the near surface regions, and (N)EXAFS fluorescence spectra (at the L3 edge) in the bulk. Moreover, XRD and EXAFS showed the reversible expansion and contraction of the CeO2 unit cell in H2 and O2 environments, respectively. The expansion of the CeO2 cell was mainly associated with the formation of oxygen vacancies as a result of the Pt-mediated reduction of Ce4+ to Ce3+. We also found that pure mesoporous CeO2 can not be reduced in H2 under identical conditions but can be partially reduced at above 450 C as revealed by APXPS. The role of Pt in H2 was identified as a catalytic one that reduces the activation barrier for the reduction of CeO2 via hydrogen spillover. © 2013 American Chemical Society.close107

    New State of Matter: Heavy Fermion Systems, Quantum Spin Liquids, Quasicrystals, Cold Gases, and High-Temperature Superconductors

    No full text
    International audienceWe report on a new state of matter manifested by strongly correlated Fermi systems including various heavy fermion (HF) metals, two-dimensional quantum liquids such as He films, certain quasicrystals, and systems behaving as quantum spin liquids. Generically, these systems can be viewed as HF systems or HF compounds, in that they exhibit typical behavior of HF metals. At zero temperature, such systems can experience a so-called fermion condensation quantum phase transition (FCQPT). Combining analytical considerations with arguments based entirely on experimental grounds, we argue and demonstrate that the class of HF systems is characterized by universal scaling behavior of their thermodynamic, transport, and relaxation properties. That is, the quantum physics of different HF compounds is found to be universal, emerging irrespective of the individual details of their symmetries, interactions, and microscopic structure. This observed universal behavior reveals the existence of a new state of matter manifest in HF compounds. We propose a simple, realistic model to study the appearance of flat bands in two-dimensional ensembles of ultracold fermionic atoms, interacting with coherent resonant light. It is shown that signatures of these flat bands may be found in peculiarities in their thermodynamic and spectroscopic properties. We also show that the FCQPT, in generating flat bands and altering Fermi surface topology, is an essential progenitor of the exotic behavior of the overdoped high-temperature superconductors represented by La2+xSr_{2+x}Sr_xxCuOxCuO_4$, whose superconductivity differs from that predicted by the classical Bardeen–Cooper–Schrieffer theory. The theoretical results presented are in good agreement with recent experimental observations, closing the colossal gap between these empirical findings and Bardeen–Cooper–Schrieffer-like theories

    Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology

    No full text
    corecore