15 research outputs found

    Delay of EGF-Stimulated EGFR Degradation in Myotonic Dystrophy Type 1 (DM1)

    Get PDF
    Funding Information: This research was supported by the Isabel Gemio Foundation (P18–13) and was also partially supported by the “Fondo Europeo de Desarrollo Regional” (FEDER) from the European Union. E.A.-C. was supported by a pre-doctoral fellowship of Valhondo Calaff Foundation. S.C.-C. and E.U.-C. were supported by FPU fellowships (FPU19/04435 and FPU16/00684, respectively) from the Ministerio de Ciencia, Innovación y Universidades, Spain. M.P.-B. and A.G.-B. received fellowships from the “Plan Propio de Iniciación a la Investigación, Desarrollo Tecnológico e Innovación (Universidad de Extremadura). M.N.-S. was supported by the “Ramon y Cajal” Program (RYC-2016–20883), and P.G.-S., was funded by “Juan de la Cierva Incorporación” Program (IJC2019–039229-I), Spain. S.M.S.Y.-D. was supported by the Isabel Gemio Foundation and CIBERNED (CB06/05/0041). J.M.F received research support from the Isabel Gemio Foundation and the “Instituto de Salud Carlos” III, CIBERNED (CB06/05/0041). Publisher Copyright: © 2022 by the authors.Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3′ untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand–receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.publishersversionpublishe

    The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy

    Get PDF
    Mitochondria form close physical associations with the endoplasmic reticulum (ER) that regulate a number of physiological functions. One mechanism by which regions of ER are recruited to mitochondria involves binding of the ER protein VAPB to the mitochondrial protein PTPIP51, which act as scaffolds to tether the two organelles. Here, we show that the VAPB-PTPIP51 tethers regulate autophagy. We demonstrate that overexpression of VAPB or PTPIP51 to tighten ER-mitochondria contacts impairs, whereas small interfering RNA (siRNA)-mediated loss of VAPB or PTPIP51 to loosen contacts stimulates, autophagosome formation. Moreover, we show that expression of a synthetic linker protein that artificially tethers ER and mitochondria also reduces autophagosome formation, and that this artificial tether rescues the effects of siRNA loss of VAPB or PTPIP51 on autophagy. Thus, these effects of VAPB and PTPIP51 manipulation on autophagy are a consequence of their ER-mitochondria tethering function. Interestingly, we discovered that tightening of ER-mitochondria contacts by overexpression of VAPB or PTPIP51 impairs rapamycin- and torin 1-induced, but not starvation-induced, autophagy. This suggests that the regulation of autophagy by ER-mitochondria signaling is at least partly dependent upon the nature of the autophagic stimulus. Finally, we demonstrate that the mechanism by which the VAPB-PTPIP51 tethers regulate autophagy involves their role in mediating delivery of Ca(2+) to mitochondria from ER stores. Thus, our findings reveal a new molecular mechanism for regulating autophagy

    There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases

    Get PDF
    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or ‘MAM’). Moreover, several recent studies have shown that disturbances to ER–mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings

    α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca<sup>2+</sup> homeostasis and mitochondrial ATP production

    Get PDF
    α-Synuclein is strongly linked to Parkinson's disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson's disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson's disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER-mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson's disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER-mitochondria contacts is accompanied by disruption to Ca(2+) exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca(2+) signaling and ATP

    Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain

    Get PDF
    Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions, many of which are perturbed in Alzheimer's disease. Moreover, damage to ER-mitochondria signaling is seen in cell and transgenic models of Alzheimer's disease. However, as yet there is little evidence that ER-mitochondria signaling is altered in human Alzheimer's disease brains. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and “tether” regions of ER to the mitochondrial surface. The VAPB-PTPIP51 tethers are now known to regulate a number of ER-mitochondria signaling functions including delivery of Ca2+from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and Alzheimer's disease brains. Quantification of ER-mitochondria signaling proteins by immunoblotting revealed loss of VAPB and PTPIP51 in cortex but not cerebellum at end-stage Alzheimer's disease. Proximity ligation assays were used to quantify the VAPB-PTPIP51 interaction in temporal cortex pyramidal neurons and cerebellar Purkinje cell neurons in control, Braak stage III-IV (early/mid-dementia) and Braak stage VI (severe dementia) cases. Pyramidal neurons degenerate in Alzheimer's disease whereas Purkinje cells are less affected. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in Braak stage III-IV pyramidal but not Purkinje cell neurons. Thus, we identify a new pathogenic event in post-mortem Alzheimer's disease brains. The implications of our findings for Alzheimer's disease mechanisms are discussed

    LMTK2 binds to kinesin light chains to mediate anterograde axonal transport of cdk5/p35 and LMTK2 levels are reduced in Alzheimer’s disease brains

    Get PDF
    Cyclin dependent kinase-5 (cdk5)/p35 is a neuronal kinase that regulates key axonal and synaptic functions but the mechanisms by which it is transported to these locations are unknown. Lemur tyrosine kinase-2 (LMTK2) is a binding partner for p35 and here we show that LMTK2 also interacts with kinesin-1 light chains (KLC1/2). Binding to KLC1/2 involves a C-terminal tryptophan/aspartate (WD) motif in LMTK2 and the tetratricopeptide repeat (TPR) domains in KLC1/2, and this interaction facilitates axonal transport of LMTK2. Thus, siRNA loss of KLC1 or mutation of the WD motif disrupts axonal transport of LMTK2. We also show that LMTK2 facilitates the formation of a complex containing KLC1 and p35 and that siRNA loss of LMTK2 disrupts axonal transport of both p35 and cdk5. Finally, we show that LMTK2 levels are reduced in Alzheimer’s disease brains. Damage to axonal transport and altered cdk5/p35 are pathogenic features of Alzheimer’s disease. Thus, LMTK2 binds to KLC1 to direct axonal transport of p35 and its loss may contribute to Alzheimer’s disease

    Disruption of ER-mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis

    Get PDF
    Abstract Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two related and incurable neurodegenerative diseases. Features of these diseases include pathological protein inclusions in affected neurons with TAR DNA-binding protein 43 (TDP-43), dipeptide repeat proteins derived from the C9ORF72 gene, and fused in sarcoma (FUS) representing major constituent proteins in these inclusions. Mutations in C9ORF72 and the genes encoding TDP-43 and FUS cause familial forms of FTD/ALS which provides evidence to link the pathology and genetics of these diseases. A large number of seemingly disparate physiological functions are damaged in FTD/ALS. However, many of these damaged functions are regulated by signalling between the endoplasmic reticulum and mitochondria, and this has stimulated investigations into the role of endoplasmic reticulum-mitochondria signalling in FTD/ALS disease processes. Here, we review progress on this topic

    Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia

    Get PDF
    Hexanucleotide repeat expansions in C9orf72 are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mechanisms by which the expansions cause disease are not properly understood but a favoured route involves its translation into dipeptide repeat (DPR) polypeptides, some of which are neurotoxic. However, the precise targets for mutant C9orf72 and DPR toxicity are not fully clear, and damage to several neuronal functions has been described. Many of these functions are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. ER‐mitochondria signalling requires close physical contacts between the two organelles that are mediated by the VAPB‐PTPIP51 ‘tethering’ proteins. Here, we show that ER‐mitochondria signalling and the VAPB‐PTPIP51 tethers are disrupted in neurons derived from induced pluripotent stem (iPS) cells from patients carrying ALS/FTD pathogenic C9orf72 expansions and in affected neurons in mutant C9orf72 transgenic mice. In these mice, disruption of the VAPB‐PTPIP51 tethers occurs prior to disease onset suggesting that it contributes to the pathogenic process. We also show that neurotoxic DPRs disrupt the VAPB‐PTPIP51 interaction and ER‐mitochondria contacts and that this may involve activation of glycogen synthase kinases‐3β (GSK3β), a known negative regulator of VAPB‐PTPIP51 binding. Finally, we show that these DPRs disrupt delivery of Ca(2+) from ER stores to mitochondria, which is a primary function of the VAPB‐PTPIP51 tethers. This delivery regulates a number of key neuronal functions that are damaged in ALS/FTD including bioenergetics, autophagy and synaptic function. Our findings reveal a new molecular target for mutant C9orf72‐mediated toxicity
    corecore