14,221 research outputs found
-Flavour Violation at the LHC
We study the conditions required for
decays to yield observable tau flavour violation at the LHC, for cosmologically
interesting values of the neutralino relic density. These condition can be
achieved in the framework of a SU(5) model with a see-saw mechanism that allows
a possible coexistence of a LHC signal a low prediction for radiative LFV
decays.Comment: 7 pages, 5 figures, Prepared for the proceedings of the workshop:
"LC09: Physics at the TeV Scale and the Dark Matter Connection",
21-24 September 2009, Perugia, Ital
Collective resonances in plasmonic crystals: Size matters
Periodic arrays of metallic nanoparticles may sustain Surface Lattice
Resonances (SLRs), which are collective resonances associated with the
diffractive coupling of Localized Surface Plasmon Resonances (LSPRs). By
investigating a series of arrays with varying number of particles, we traced
the evolution of SLRs to its origins. Polarization resolved extinction spectra
of arrays formed by a few nanoparticles were measured, and found to be in very
good agreement with calculations based on a coupled dipole model. Finite size
effects on the optical properties of the arrays are observed, and our results
provide insight into the characteristic length scales for collective plasmonic
effects: for arrays smaller than 5 x 5 particles, the Q-factors of SLRs are
lower than those of LSPRs; for arrays larger than 20 x 20 particles, the
Q-factors of SLRs saturate at a much larger value than those of LSPRs; in
between, the Q-factors of SLRs are an increasing function of the number of
particles in the array.Comment: 4 figure
Thermalization and Cooling of Plasmon-Exciton Polaritons: Towards Quantum Condensation
We present indications of thermalization and cooling of quasi-particles, a
precursor for quantum condensation, in a plasmonic nanoparticle array. We
investigate a periodic array of metallic nanorods covered by a polymer layer
doped with an organic dye at room temperature. Surface lattice resonances of
the array---hybridized plasmonic/photonic modes---couple strongly to excitons
in the dye, and bosonic quasi-particles which we call
plasmon-exciton-polaritons (PEPs) are formed. By increasing the PEP density
through optical pumping, we observe thermalization and cooling of the strongly
coupled PEP band in the light emission dispersion diagram. For increased
pumping, we observe saturation of the strong coupling and emission in a new
weakly coupled band, which again shows signatures of thermalization and
cooling.Comment: 8 pages, 5 figures including supplemental material. The newest
version includes new measurements and corrections to the interpretation of
the result
NR-SLAM: Non-Rigid Monocular SLAM
In this paper we present NR-SLAM, a novel non-rigid monocular SLAM system
founded on the combination of a Dynamic Deformation Graph with a Visco-Elastic
deformation model. The former enables our system to represent the dynamics of
the deforming environment as the camera explores, while the later allows us to
model general deformations in a simple way. The presented system is able to
automatically initialize and extend a map modeled by a sparse point cloud in
deforming environments, that is refined with a sliding-window Deformable Bundle
Adjustment. This map serves as base for the estimation of the camera motion and
deformation and enables us to represent arbitrary surface topologies,
overcoming the limitations of previous methods. To assess the performance of
our system in challenging deforming scenarios, we evaluate it in several
representative medical datasets. In our experiments, NR-SLAM outperforms
previous deformable SLAM systems, achieving millimeter reconstruction accuracy
and bringing automated medical intervention closer. For the benefit of the
community, we make the source code public.Comment: 12 pages, 7 figures, submited to the IEEE Transactions on Robotics
(T-RO
Dielectric branes in non-trivial backgrounds
We present a procedure to evaluate the action for dielectric branes in
non-trivial backgrounds. These backgrounds must be capable to be taken into a
Kaluza-Klein form, with some non-zero wrapping factor. We derive the way this
wrapping factor is gauged away. Examples of this are AdS_5xS^5 and
AdS_3xS^3xT^4, where we perform the construction of different stable systems,
which stability relies in its dielectric character.Comment: 14 pages, published versio
From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab
We investigate a periodic array of aluminum nanoantennas embedded in a
light-emitting slab waveguide. By varying the waveguide thickness we
demonstrate the transition from weak to strong coupling between localized
surface plasmons in the nanoantennas and refractive index guided modes in the
waveguide. We experimentally observe a non-trivial relationship between
extinction and emission dispersion diagrams across the weak to strong coupling
transition. These results have implications for a broad class of photonic
structures where sources are embedded within coupled resonators. For
nanoantenna arrays, strong vs. weak coupling leads to drastic modifications of
radiation patterns without modifying the nanoantennas themselves, thereby
representing an unprecedented design strategy for nanoscale light sources
- …