14,221 research outputs found

    Ï„\tau-Flavour Violation at the LHC

    Get PDF
    We study the conditions required for χ2→χ+τ±μ∓\chi_2 \to \chi + \tau^\pm \mu^\mp decays to yield observable tau flavour violation at the LHC, for cosmologically interesting values of the neutralino relic density. These condition can be achieved in the framework of a SU(5) model with a see-saw mechanism that allows a possible coexistence of a LHC signal a low prediction for radiative LFV decays.Comment: 7 pages, 5 figures, Prepared for the proceedings of the workshop: "LC09: e+e−e^+ e^- Physics at the TeV Scale and the Dark Matter Connection", 21-24 September 2009, Perugia, Ital

    Collective resonances in plasmonic crystals: Size matters

    Full text link
    Periodic arrays of metallic nanoparticles may sustain Surface Lattice Resonances (SLRs), which are collective resonances associated with the diffractive coupling of Localized Surface Plasmon Resonances (LSPRs). By investigating a series of arrays with varying number of particles, we traced the evolution of SLRs to its origins. Polarization resolved extinction spectra of arrays formed by a few nanoparticles were measured, and found to be in very good agreement with calculations based on a coupled dipole model. Finite size effects on the optical properties of the arrays are observed, and our results provide insight into the characteristic length scales for collective plasmonic effects: for arrays smaller than 5 x 5 particles, the Q-factors of SLRs are lower than those of LSPRs; for arrays larger than 20 x 20 particles, the Q-factors of SLRs saturate at a much larger value than those of LSPRs; in between, the Q-factors of SLRs are an increasing function of the number of particles in the array.Comment: 4 figure

    Thermalization and Cooling of Plasmon-Exciton Polaritons: Towards Quantum Condensation

    Get PDF
    We present indications of thermalization and cooling of quasi-particles, a precursor for quantum condensation, in a plasmonic nanoparticle array. We investigate a periodic array of metallic nanorods covered by a polymer layer doped with an organic dye at room temperature. Surface lattice resonances of the array---hybridized plasmonic/photonic modes---couple strongly to excitons in the dye, and bosonic quasi-particles which we call plasmon-exciton-polaritons (PEPs) are formed. By increasing the PEP density through optical pumping, we observe thermalization and cooling of the strongly coupled PEP band in the light emission dispersion diagram. For increased pumping, we observe saturation of the strong coupling and emission in a new weakly coupled band, which again shows signatures of thermalization and cooling.Comment: 8 pages, 5 figures including supplemental material. The newest version includes new measurements and corrections to the interpretation of the result

    NR-SLAM: Non-Rigid Monocular SLAM

    Full text link
    In this paper we present NR-SLAM, a novel non-rigid monocular SLAM system founded on the combination of a Dynamic Deformation Graph with a Visco-Elastic deformation model. The former enables our system to represent the dynamics of the deforming environment as the camera explores, while the later allows us to model general deformations in a simple way. The presented system is able to automatically initialize and extend a map modeled by a sparse point cloud in deforming environments, that is refined with a sliding-window Deformable Bundle Adjustment. This map serves as base for the estimation of the camera motion and deformation and enables us to represent arbitrary surface topologies, overcoming the limitations of previous methods. To assess the performance of our system in challenging deforming scenarios, we evaluate it in several representative medical datasets. In our experiments, NR-SLAM outperforms previous deformable SLAM systems, achieving millimeter reconstruction accuracy and bringing automated medical intervention closer. For the benefit of the community, we make the source code public.Comment: 12 pages, 7 figures, submited to the IEEE Transactions on Robotics (T-RO

    Dielectric branes in non-trivial backgrounds

    Full text link
    We present a procedure to evaluate the action for dielectric branes in non-trivial backgrounds. These backgrounds must be capable to be taken into a Kaluza-Klein form, with some non-zero wrapping factor. We derive the way this wrapping factor is gauged away. Examples of this are AdS_5xS^5 and AdS_3xS^3xT^4, where we perform the construction of different stable systems, which stability relies in its dielectric character.Comment: 14 pages, published versio

    From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab

    Get PDF
    We investigate a periodic array of aluminum nanoantennas embedded in a light-emitting slab waveguide. By varying the waveguide thickness we demonstrate the transition from weak to strong coupling between localized surface plasmons in the nanoantennas and refractive index guided modes in the waveguide. We experimentally observe a non-trivial relationship between extinction and emission dispersion diagrams across the weak to strong coupling transition. These results have implications for a broad class of photonic structures where sources are embedded within coupled resonators. For nanoantenna arrays, strong vs. weak coupling leads to drastic modifications of radiation patterns without modifying the nanoantennas themselves, thereby representing an unprecedented design strategy for nanoscale light sources
    • …
    corecore